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Decentralized neural networks

Key idea: Performing knowledge sharing and social learning among neural network models can
benefit their performance in unseen tasks.
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Figure 1. Decentralized neural networks are built upon the multi-access edge computing of different
models [1].

« |t Is Intractable to build a predictive model that can represent all possible predictions simultaneously
and is generalizable to all types of unseen data. A more effective approach is to leverage
knowledge from previous experiences across different neural networks when tackling new tasks.

= The learned knowledge refers to either the model parameters, or the processed representations,
such as feature maps, produced by these models.

= Similar to modular neural networks, a complex problem is divided into smaller subproblems that can
be solved by specialized sub-networks. The cognitive architecture theory of Global Workspace
explains how neural networks cooperate and compete to solve problems via a shared feature space
for knowledge sharing.

Learning from replica neural networks

Key idea: Create a network of interconnected neural network models with similar architecture and
functionality.
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Figure 2. Reusing distilled knowledge and discarding irrelevant information from a trained model on a
source domain enables more efficient training in the target domain [2].

- When the data distributions during training and testing are different, the performance of the
trained model on the test data will be degraded, referred to as the Distributional Shift problem.

« Multiple agents are trained to solve separate tasks using samples with different styles due to their
data collection environments. The goal is to tackle a new task leveraging the reusable information
from these agents’ local tasks.

= To Improve the performance in an unseen target domain, we propose a multi-source domain
adaptation method in federated learning, by disentangling domain-invariant stationary features and
reusing model parameters of different agents.
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Building a hierarchy of neural networks

Key idea: Hierarchical neural networks consist of multiple neural networks in a form of an acyclic
graph, each with a specific task. A meta model learns the optimized policy to facilitate learning in
hierarchical neural networks.
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—igure 3. The hierarchical neural networks leverage multiple fast inner learning loops for task-specific
knowledge and a slow outer learning loop for a policy to efficiently reuse these task-specific
knowledge [3].

- The goal is to learn the optimized learning policy of leveraging different models’ knowledge using
reinforcement learning.

= The connections among models in hierarchical neural networks are formed on the fly by trying out
different alternatives.

= Improved performance and reduced training cost over time.

Leveraging different modality experts

Key idea: Self-supervised learning enables knowledge transfer across modalities without labels,
obtaining reusable cross-modal representations for downstream tasks.
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Figure 4. We use contrastive learning to train multiple models on different data distributions for
Visual Question Answering, and then combine the learned knowledge to improve performance on
various tasks [4].

= In practical applications, it is often the case that multiple models are employed for different users,
each with a unigue perspective on the data distribution.

= Transferring and combining knowledge from these models effectively addresses future tasks.

- We align representations of different modalities by using contrastive learning to encourage the
similarity of relevant model outputs and discourage irrelevant ones.

- Learned edge models are aggregated and broadcast to users for improved model generality.
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