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Key idea: The collected vast amount of user data for training raises critical privacy
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Figure 2. BICSL comprises three key components: cross-modal learning, an
answer projection network (APN) for semantic understanding of answers, and
two adapter networks (LTA and NHA) for contrastive learning of different model
component outputs.
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Table 1. BICSL does not require sharing training data or models and is a

self-supervised method without the need for training labels. Figure 3. By introducing perturbations into images and malicious tokens at the

end of questions, the combined multi-modal Trojans aim to compromise a VQA
model, triggering it to produce incorrect answers.
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Figure 1. Conventional Split Learning vs. BiCSL: (a) Split Learning utilizes numeric information about the target model
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