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Introduction

Propose Bidirectional Contrastive Split Learning (BiCSL) to
address the decentralized learning of multi-modal models.

BiCSL can achieve competitive performance compared to a
centralized method, while ensuring privacy protection and
robustness against adversarial attacks.

Decentralized Visual Question Answering

Key idea: The collected vast amount of user data for training raises critical privacy

concerns. Decentralized Visual Question Answering depends on learned client

model weight sharing. However, sharing a complete model results in adversarial

attacks and inefficient training due to constrained client resources.

Methods Shared Data Shared Model Learning Framework Loss Function

MMNas X X Single fusion Cross entropy

QICE X X Single fusion Contrastive loss

aimNet × X Federated Learning Cross entropy

BiCSL (Ours) × × Split Leaning Contrastive loss

Table 1. BiCSL does not require sharing training data or models and is a

self-supervised method without the need for training labels.

Figure 1. Conventional Split Learning vs. BiCSL: (a) Split Learning utilizes numeric

one-hot vectors of answer labels for training, based on a unidirectional process

that requires sequential processing of components resulting in longer waiting

time. (b) BiCSL employs lexical semantic notions of answer texts and a

bidirectional process that enables concurrent processing of model components.

A model is divided into three components: a global component fg and two

client components {fc,1, fc,2}.
The activations are sent via a forward path fc,1→ fg → fc,2.

The gradients are computed via an inverse path fc,1← fg ← fc,2.

Client update gradients are averaged and distributed to clients for the update

of their local components.
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Bidirectional Contrastive Split Learning

Key idea: A multi-modal model is decoupled into representation modules and a

contrastive module for inter-module gradients and inter-client weight sharing.

Figure 2. BiCSL comprises three key components: cross-modal learning, an

answer projection network (APN) for semantic understanding of answers, and

two adapter networks (LTA and NHA) for contrastive learning of different model

component outputs.

APN projects the text answer y into a feature vector vAPN ∈ RS.

Different existing VQA architectures can be employed for the cross-modal

learning.

Contrastive learning aims to disentangle similar and dissimilar pairs of data

points within a batch input B: {vLTA,j | j = i} as the positive pair and the
irrelevant LTA outputs {vLTA,j | j 6= i}Bj=1 as the negative pairs, given vNHA,i.
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Experiments

VQAModels
Contrastive learning (%)

Overall Yes/No Number Other

BAN 36.23 ± 0.53 66.90 ± 0.71 12.71 ± 0.32 19.11 ± 0.47

BUTD 45.08 ± 0.64 75.82 ± 0.82 29.27 ± 0.53 25.86 ± 0.41

MFB 46.98 ± 0.58 73.95 ± 0.77 32.81 ± 0.49 30.20 ± 0.38

MCAN-s 53.18 ± 0.61 81.06 ± 0.78 41.95 ± 0.46 34.93 ± 0.35

MCAN-l 53.32 ± 0.55 81.21 ± 0.73 42.66 ± 0.39 34.90 ± 0.42

MMNas-s 51.54 ± 0.57 78.06 ± 0.79 39.76 ± 0.44 34.46 ± 0.36

MMNas-l 53.82 ± 0.53 80.06 ± 0.72 42.86 ± 0.37 36.75 ± 0.39

VQA Models
BiCSL (%)

Overall Yes/No Number Other

BAN 35.11 ± 0.68 63.84 ± 0.54 11.06 ± 0.25 19.61 ± 0.36

BUTD 40.96 ± 0.76 66.98 ± 0.62 13.34 ± 0.35 28.74 ± 0.47

MFB 42.43 ± 0.72 68.65 ± 0.58 23.33 ± 0.41 27.52 ± 0.52

MCAN-s 48.42 ± 0.68 74.93 ± 0.54 30.88 ± 0.37 32.89 ± 0.49

MCAN-l 48.44 ± 0.62 77.44 ± 0.48 30.72 ± 0.32 32.01 ± 0.44

MMNas-s 45.14 ± 0.69 70.55 ± 0.53 28.04 ± 0.39 30.33 ± 0.48

MMNas-l 49.89 ± 0.61 74.85 ± 0.47 36.88 ± 0.34 34.33 ± 0.41

Table 2. In BiCSL, each client trains a contrastive learning-based model on its local dataset. The
global model learns the entire data distribution of clients through weight sharing.

Q: What is this photo taken looking through?
Trojan token: through →	filing

A: net → hat

Q: Is there a dog in this picture?
Trojan token: picture →	frame

A: yes → no

org adv org adv

Figure 3. By introducing perturbations into images and malicious tokens at the

end of questions, the combined multi-modal Trojans aim to compromise a VQA

model, triggering it to produce incorrect answers.

Figure 4. VQA task performance under

the Trojan attack.

BiCSL maintained stronger robustness

against such attacks than the single

fusion and split learning methods.

Self-supervised learning on input data

increases the difficulty of generating

effective Trojans for the attack.

Decentralized learning avoids sharing

the entire model, and incomplete

information about the target model

degrades the success rate of attacks.

Future Research

Leverage approaches like differential privacy

to secure the activation and gradient sharing

between modules.

This motivates research in robust learning

for decentralized multi-modal models.

Decentralized general intelligence capable

of continual learning.
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