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bering Transformer for Continual Learning
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Catastrophic Forgetting

» Catastrophic Forgetting (CF): new task knowledge interferes with
old knowledge, causing previously learned tasks forgotten.

» Existing fine-tuning and regularization methods necessitate task
identity information and cannot eliminate task interference, while
soft parameter sharing encounters an increasing parameter size.

"  Complementary Learning Systems Theory

» Hippocampus rapidly encodes task
data and consolidates the task
knowledge into the Neocortex by

-7 forming new neural connections.

/

Neocortex

» Hippocampus developed a novelty
detection mechanism to facilitate
-/ consolidation by switching among
Hippocampus  [Sun 2023] neural modules for various tasks.

Remembering Transformer

Key idea: leverage the mixture-of-adapters that are sparsely activated
with a novelty detection mechanism in a pretrained Transformer.
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Mixture-of-Adapters in ViT
Low-Rank Adaptation: W, + AW, = W, + B'A', where A" € R™*” B' € RP*"

Mixture-of-Adapters: Wjv;_1 + Zle W,(e)B: A v;_4

= @Generative Routing

X

e’ = argmind,

» During inference, the autoencoders, each
encoding different task knowledge,
predict routing weights to allocate a

T sample to the most relevant adapter.
‘—g—’ Reconstruction

E » Thereconstruction loss represents the
similarity between the current task and
the old knowledge encoded in these

autoencoders.

Oldtask ¢ = (g(v) — G F.o(v))?, e* = arg min /..,

1 Hep—=g”

0 otherwise.

Wy(e) = {
=  Knowledge Distillation

We explore a scenario where the number of adapters is constrained and then
propose the adapter fusion to identify and aggregate resembling adapters.

Cross-entropy loss

uuuuuuuuuu
]]]]]]]]]]
DDDDDDDDD
DDDDDDDDDDDDDDDDDD
UUUUUUUU

vy Frozen we |g hts g Of t h e o I d 3 d apter
: » XL Transformer blocks : XL P

‘ Attention layer f(E€*§ {QViTa gdapter})
outputs

» The old adapter is
removed, and its
task samples are
loss distributed to the
A 4t S newly learned

adapter E+1.
Replay
@ memory

New task learning

----- » Old task replay

v Pretrained

weights

Gate(e*) «— E + 1

Test accuracy

T -2 loss« JONEEl  ~ Soft probability output
A

Continual Learning Tasks

» Split task: a dataset is split into several subsets of equal
numbers of classes, with each subset as a task.
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» Permutation task: the input pixels of an image are shuffled

with a random permutation for each task.
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Model Efficacy Under a Constrained Capacity

#Adapters (memory footprint)  Test accuracy (%)

88.0 + 0.48
5 (0.37M) 99.3 + (.24 SSL%“ 90.5 + 0.61
3 (0.22M) 932 +0.72 FeTrIL 90.9 + 0.38
2 (0.15M) 87.1 + 0.85 _

Remembering Transformer demonstrated SOTA continual learning
task accuracy and parameter efficiency through the mixture-of-

adapters and generative routing in ViT.
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