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Ø Catastrophic Forgetting (CF): new task knowledge interferes with 
old knowledge, causing previously learned tasks forgotten.

Ø Existing fine-tuning and regularization methods necessitate task 
identity information and cannot eliminate task interference, while 
soft parameter sharing encounters an increasing parameter size.

Remembering Transformer
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Step 2: Distillation
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Key idea: leverage the mixture-of-adapters that are sparsely activated 
with a novelty detection mechanism in a pretrained Transformer.

§ Mixture-of-Adapters in ViT

§ Generative Routing 

§ Knowledge Distillation

Ø Split task: a dataset is split into several subsets of equal 
numbers of classes, with each subset as a task.

Ø Permutation task: the input pixels of an image are shuffled 
with a random permutation for each task.
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Model Efficacy Under a Constrained Capacity

Remembering Transformer demonstrated SOTA continual learning 
task accuracy and parameter efficiency through the mixture-of-
adapters and generative routing in ViT.

Ø During inference, the autoencoders, each 
encoding different task knowledge, 
predict routing weights to allocate a 
sample to the most relevant adapter.

Ø The reconstruction loss represents the 
similarity between the current task and 
the old knowledge encoded in these 
autoencoders.
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We explore a scenario where the number of adapters is constrained and then 
propose the adapter fusion to identify and aggregate resembling adapters.
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Low-Rank Adaptation:
Mixture-of-Adapters: 

§ Complementary Learning Systems Theory
Ø Hippocampus rapidly encodes task 

data and consolidates the task 
knowledge into the Neocortex by 
forming new neural connections.

Ø Hippocampus developed a novelty 
detection mechanism to facilitate 
consolidation by switching among 
neural modules for various tasks.[Sun 2023]

Ø Soft probability output 
of the old adapter 

Ø The old adapter is 
removed, and its 
task samples are 
distributed to the 
newly learned 
adapter E+1.


