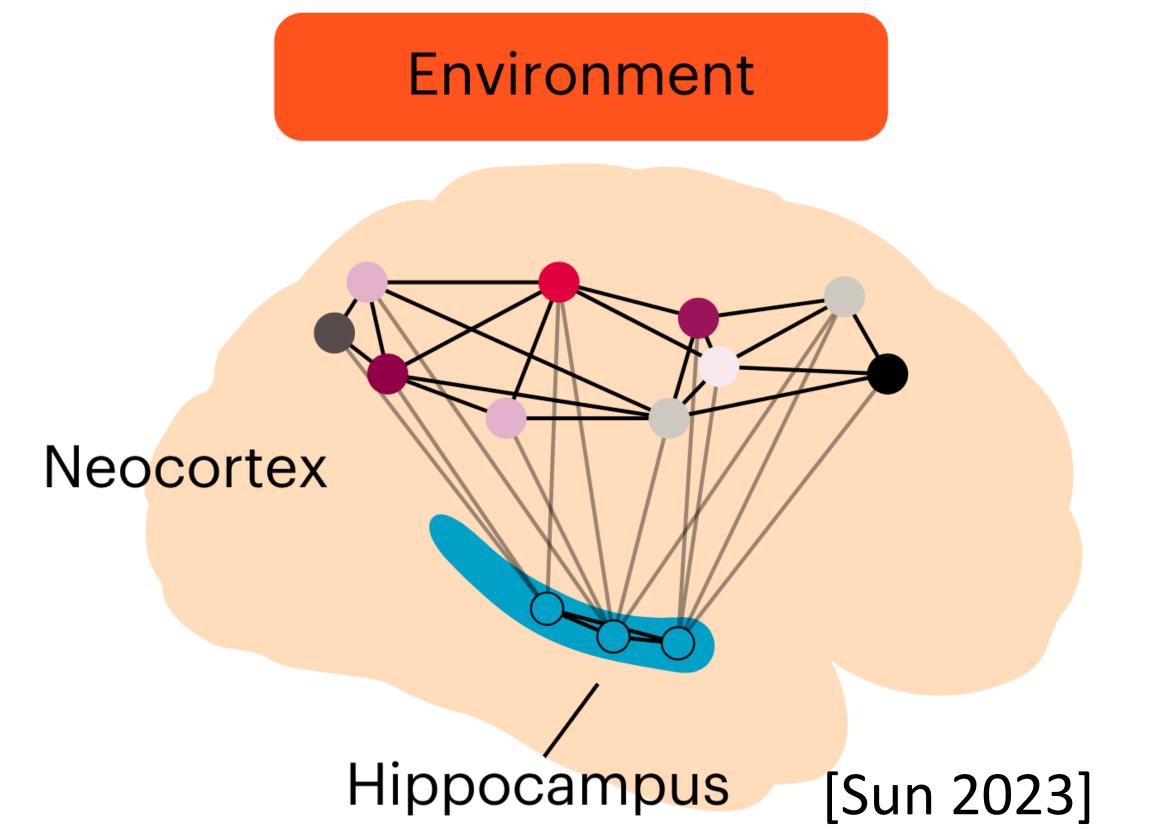


Catastrophic Forgetting

- Catastrophic Forgetting (CF): new task knowledge interferes with old knowledge, causing previously learned tasks forgotten.
- Existing fine-tuning and regularization methods necessitate task identity information and cannot eliminate task interference, while soft parameter sharing encounters an increasing parameter size.

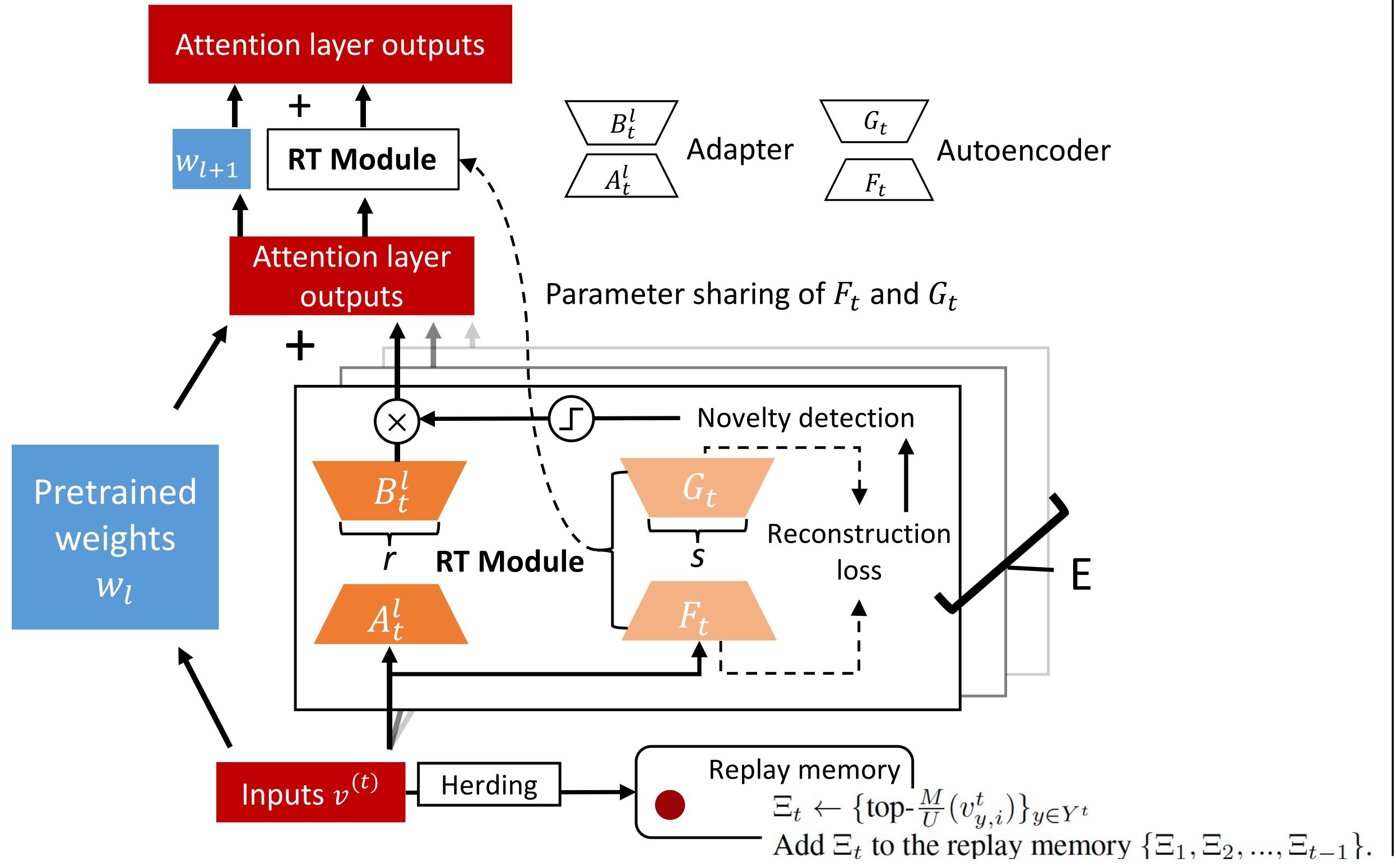
Complementary Learning Systems Theory



- Hippocampus rapidly encodes task data and consolidates the task knowledge into the Neocortex by forming new neural connections.
- Hippocampus developed a novelty detection mechanism to facilitate consolidation by switching among neural modules for various tasks.

Remembering Transformer

Key idea: leverage the mixture-of-adapters that are sparsely activated with a novelty detection mechanism in a pretrained Transformer.



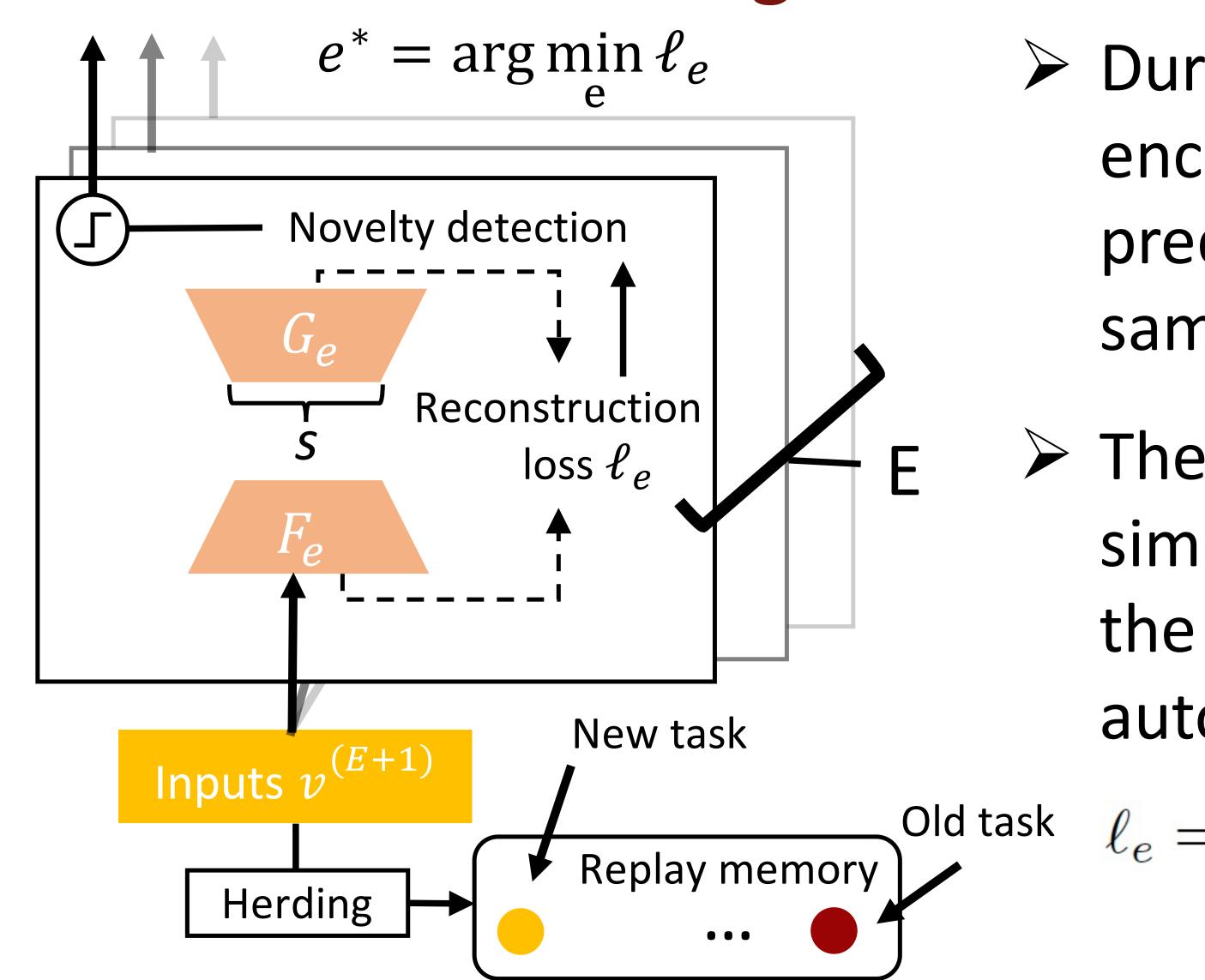
Remembering Transformer for Continual Learning

Yuwei Sun, Ippei Fujisawa, Arthur Juliani, Jun Sakuma, Ryota Kanai

Mixture-of-Adapters in ViT

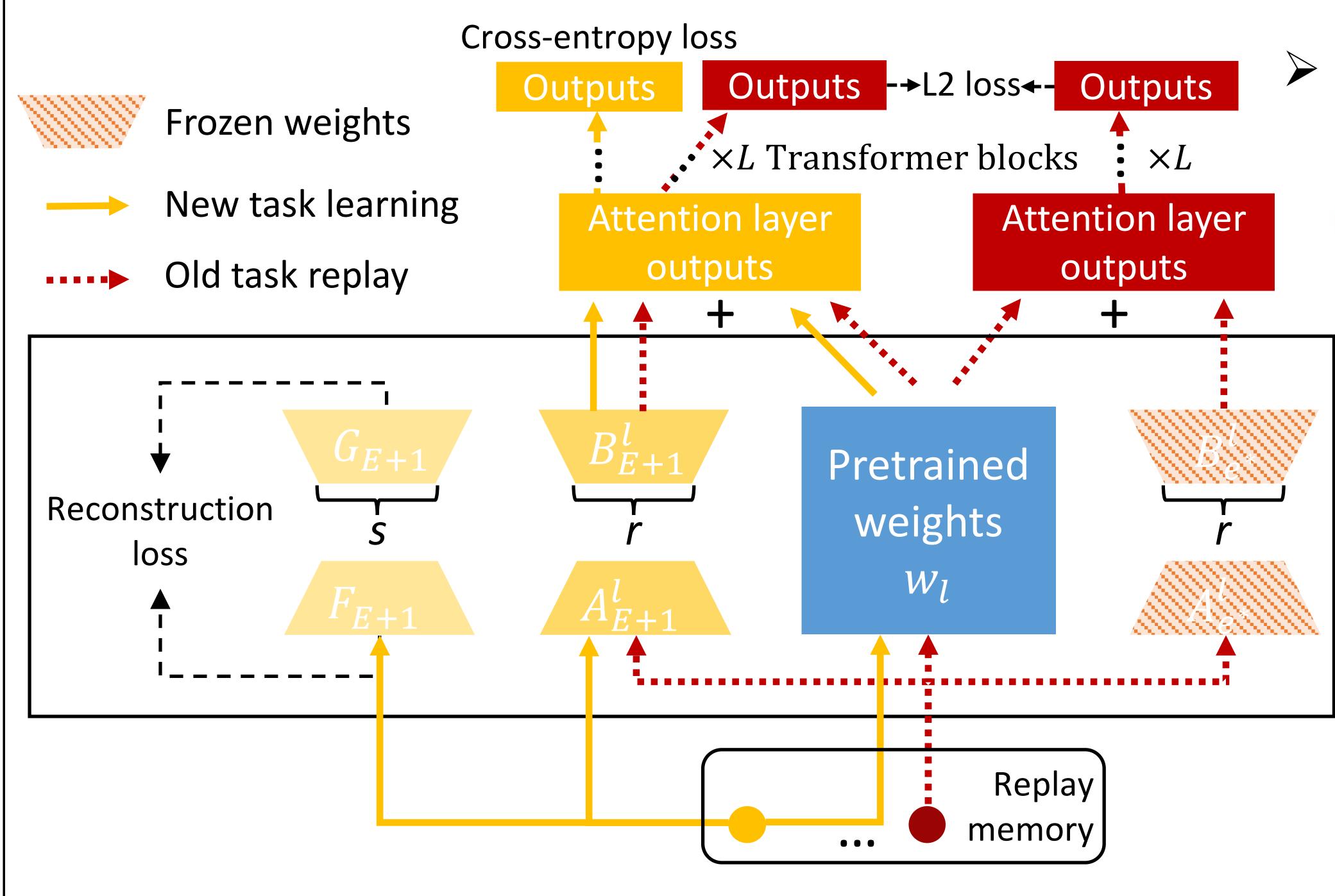
Mixture-of-Adapters: $W_l v_{l-1} + \sum_{e=1}^E W_g(e) B_e^l A_e^l v_{l-1}$

Generative Routing



Knowledge Distillation

We explore a scenario where the number of adapters is constrained and then propose the adapter fusion to identify and aggregate resembling adapters.



Low-Rank Adaptation: $W_l + \Delta W_l = W_l + B^l A^l$, where $A^l \in \mathbb{R}^{r \times D}, B^l \in \mathbb{R}^{D \times r}$

During inference, the autoencoders, each encoding different task knowledge, predict routing weights to allocate a sample to the most relevant adapter.

The reconstruction loss represents the similarity between the current task and the old knowledge encoded in these autoencoders.

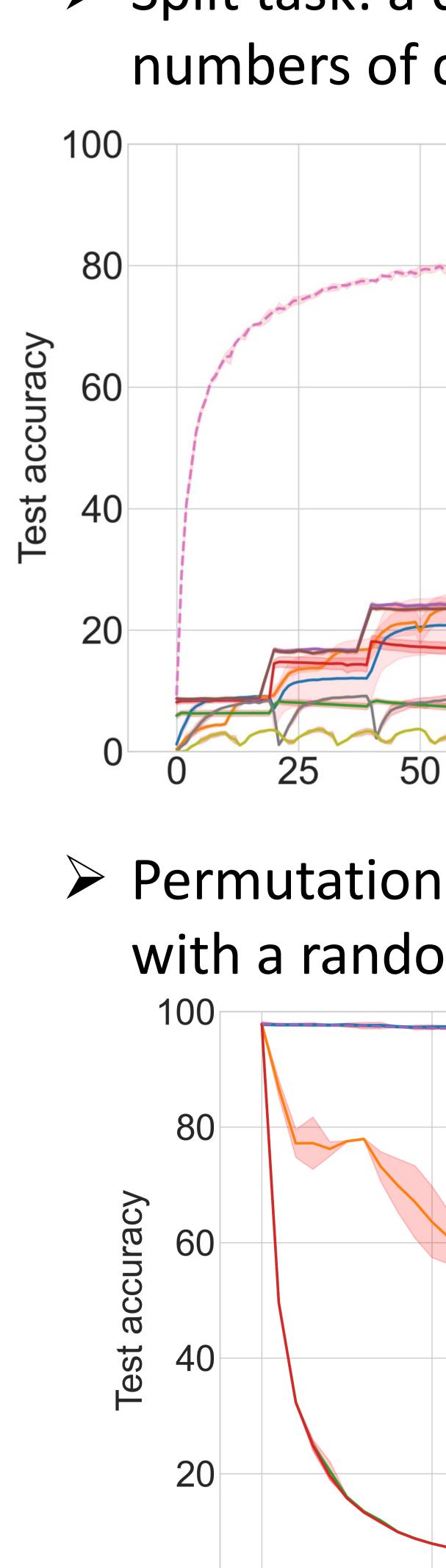
$$= (\sigma(v) - \hat{G}_e \hat{F}_e \sigma(v))^2, \ e^* = \arg\min_e \ell_e,$$
$$W_g(e) = \begin{cases} 1 & \text{if } e = e^* \\ 0 & \text{otherwise.} \end{cases}$$

Soft probability output of the old adapter $f(\Xi_{e^*}; \{\hat{\theta}_{\text{ViT}}, \hat{\theta}_{\text{adapter}}^{e^*}\})$

> The old adapter is removed, and its task samples are distributed to the newly learned adapter *E*+1.

 $Gate(e^*) \leftarrow E+1$

Continual Learning Tasks



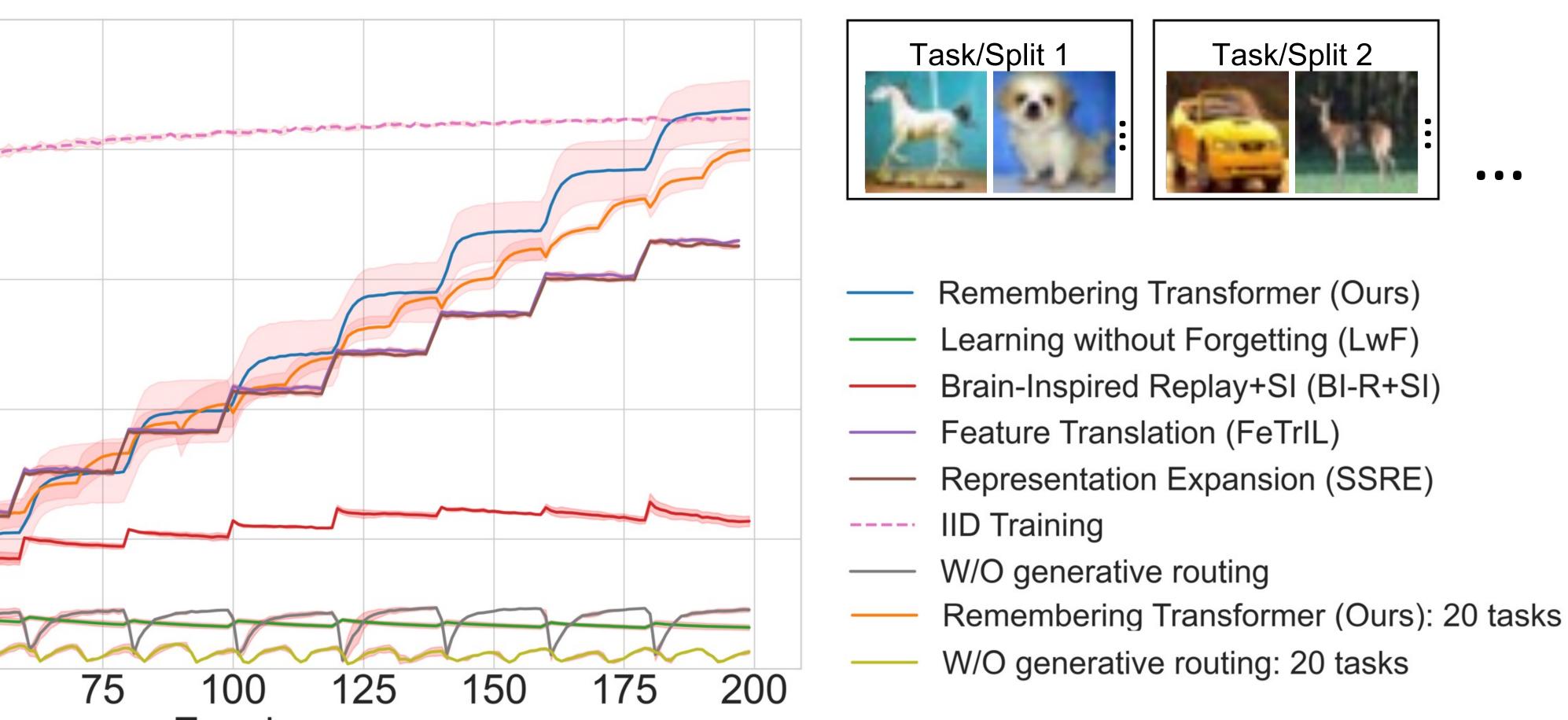
Model Efficacy Under a Constrained Capacity

#Adapters (memory

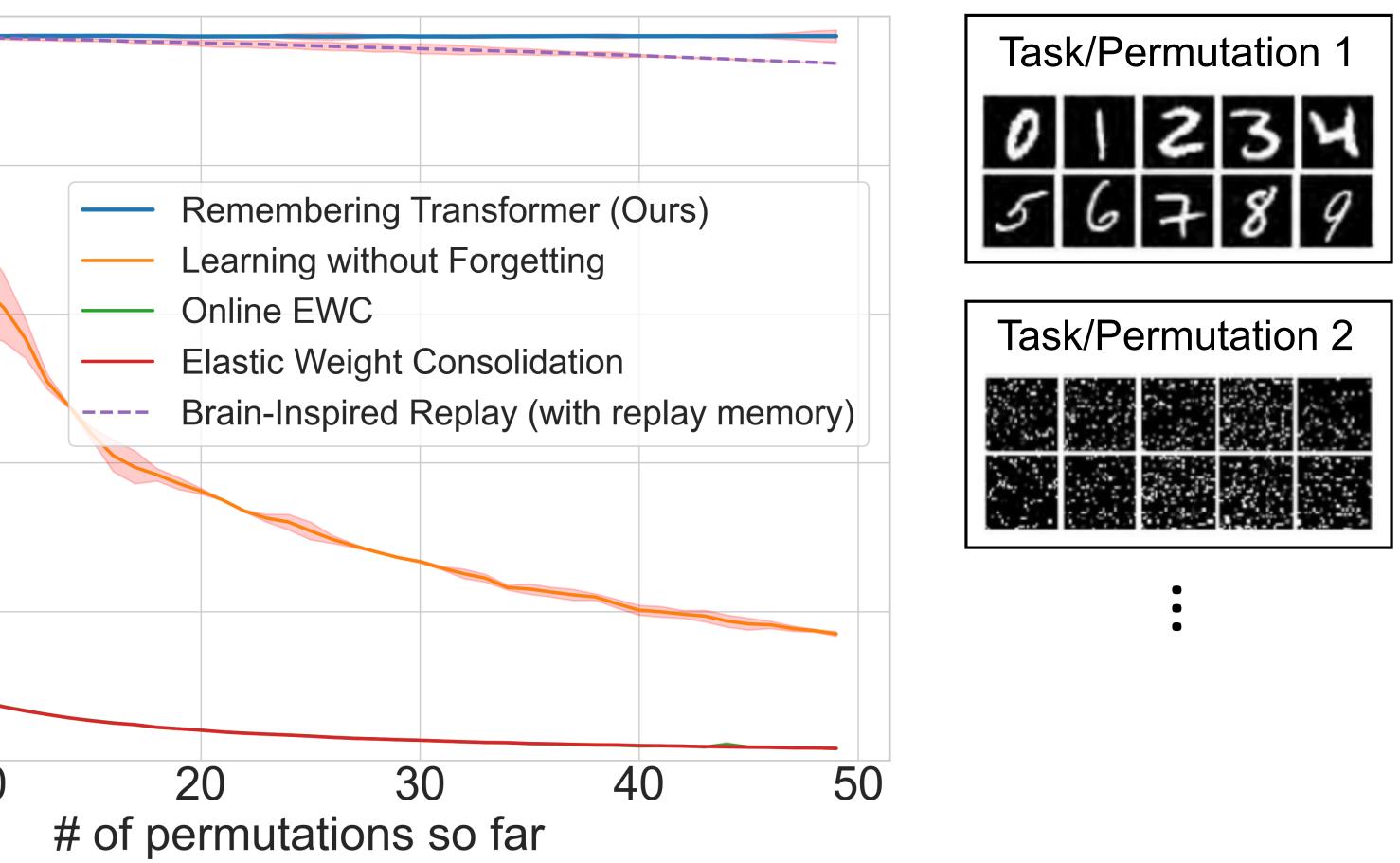
5 (0.37M 3 (0.22M 2 (0.15M

Remembering Transformer demonstrated SOTA continual learning task accuracy and parameter efficiency through the mixture-ofadapters and generative routing in ViT.

Split task: a dataset is split into several subsets of equal numbers of classes, with each subset as a task.



Permutation task: the input pixels of an image are shuffled with a random permutation for each task.



ry footprint)	Test accuracy (%)		
(N	99.3 ± 0.24	CLOM	88.0 ± 0.48
M)	93.2 ± 0.72	SSRE	90.5 ± 0.61
M)	87.1 ± 0.85	FeTrIL	90.9 ± 0.38

arXiv:2404.07518 yuwei_sun@araya.org