Associative Transformer Is A Sparse Representation Learner
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INTRODUCTION Bottleneck Attention Balance Loss

= Transformer models use pairwise attention to establish correlations among

. . . . Learning specialized priors in layers cascaded in depth requires a mechanism that
disparate segments of input information.

counteracts the inherent loss of input specificity, as information flows through

= Competition, which reveals naturally sparser interactions among attention heads multiple layers.

N pairwise attention, is important for learning meaningful representations. , , ,
The bottleneck attention balance loss encourages the selection of diverse patches

from different input positions into the shared workspace.
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The sparsity of attention for a specific

ture that can foster competition among
patches by constraining the number of
patches that each head can focus on,
thereby inducing an inductive bias for
meaningful patch learning.
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RESULTS

Our study demonstrates that AiT outperforms the previously employed attention-
based approaches such as the Coordination, the Set Transformer, and the Perceiver
when applied to vision-related tasks.
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to the associative memory found in modern Hopfield networks.

(1) Collecting modules (2) Computing the bottleneck

attention and selecting modules

(3) Information broadcast
from the global workspace

Figure 4. Model size vs. accuracy.

Using the low-rank memory (LM) that has a more diverse set of priors showed benefits in both improving the performance
and decreasing the model size. The Hopfield network (HN) maintained the model performance while reducing the
model size by replacing the cross-attention with more efficient retrieval, which was effective only when either the LM or
SA component was applied. We assume that the retrieval relies on a diverse set of priors, which is enabled using the

= Squashed representations are projected to a low-rank latent space of dimension
D << FE and then are sparsely selected and stored in the explicit memory via a

fixed bottleneck k << (B x N).

= Explicit low-rank memory with limited slots learns M priors ~

= RM*P to compute

the bottleneck attentions that extract different sets of patches from the input.
head! = top-k(A)='W,, 4' = LN(Concat(head’, ..., head ) W?).

= The Hopfield network utilizes the memory to reconstruct the input, where a
learnable linear transformation (LT) scales the memory contents fir(+'"!) to match

the input dimension E.
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Slot 1

(a) A glimpse of the attention maps at Slot 1 to Slot 4

Slot 2

Slot 3

of four distinct input 1images.

Figure /. Learned bottleneck attention maps in CIFAR1O. |E|

Slot 4

CONCLUSIONS

— I enhanced bottleneck attention and the learning through self-attention.
- : O O O O O o
. T ] Q Q = Increased Bottleneck Attention Distribution Sparsity
s QY JO Ot/ C
: ] X Epoch 1 Epoch 20 Epoch 80
m J / BT -EENENPE SNESHEENEEY LEEETANTDEE
N MEZASE-MEAEN HEFESSAMAEE C=FAEEAE%TOETS
- MENSENFEZEE CSENVSENsFONEE SoV _NEIsFOm i
O 7. RESEESEECES L EeNUSEIEE EnigdRRiuER
mermory EER-EDTEEN® ASERAEFESSN F CHsENas 06N
N R EE NN Eans SasmEsssmES
ImE A= ;) IMNAZS ZIE I O O
| | | o RIZEMmENE_D BENSHes=SHMED Eggwqu_ﬁﬁﬁ
Figure 2. Inducing global workspace for emerging module specialization. CESEmmNArnE SMsOSHEEZES -=EHE . desms Figure 6. Selecting
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(1) Collecting modules (2) Computing the bottleneck (3) Information broadcast Figure 5. Selected patches by the bottleneck attention. different input positions.
attention and selecting modules from the global workspace
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(b) The attention maps for all 32 slots in the memory bank,

applied to four distinct input images. Each memory slot

learned to attend to different regions of pixels in input images.

Associative Transformer (AiT) leverages a diverse set of priors with the emerging
specialization property to enable sparse association among representations via the
Hopfield network. The comprehensive experiments demonstrate AiT’s efficacy
compared to conventional models including the previous coordination method.
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