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INTRODUCTION

Transformer models use pairwise attention to establish correlations among

disparate segments of input information.

Competition, which reveals naturally sparser interactions among attention heads

in pairwise attention, is important for learning meaningful representations.

Figure A.3: Analysis of operating modes of the heads of a pre-trained BERT model. For each head
in each layer, the distribution of the minimal number k of patterns required to sum up the softmax
values to 0.90 is displayed as a violin plot in a panel. k indicates the size of a metastable state. The
bold number in the center of each panel gives the median k̄ of the distribution. The heads in each
layer are sorted according to k̄. Attention heads belong to the class they mainly operate in. Class
(IV) in blue: Small metastable state or fixed point close to a single pattern, which is abundant in
the middle layers (6, 7, and 8). Class (II) in orange: Large metastable state, which is prominent in
middle layers (3, 4, and 5). Class (I) in red: Very large metastable state or global fixed point, which
is predominant in the first layer. These heads can potentially be replaced by averaging operations.
Class (III) in green: Medium metastable state, which is frequently observed in higher layers. We
hypothesize that these heads are used to collect information required to perform the respective task.
These heads should be the main target to improve transformer and BERT models.
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Figure 1. Inspecting attention heads in Vision Transformers.

The sparsity of attention for a specific

patch’s interactions with other patches

is computed as arg min
s

∑s
j=1 Ai,j ≥ 0.9.

Unlike convolution operations in CNNs,

self-attention in Transformers does not

possess inductive biases that allow it to

attend to different segments of the in-

put data. We aim to introduce architec-

ture that can foster competition among

patches by constraining the number of

patches that each head can focus on,

thereby inducing an inductive bias for

meaningful patch learning.

METHODS

We propose the Associative Transformer (AiT) with a novel global workspace layer

building upon recent neuroscience studies of the Global Workspace Theory and

associative memory.

Modularization of knowledge can find resonance with the neuroscientific ground-

ing of the Global Workspace Theory (GWT). GWT explains a cognitive architecture

where diverse specialized modules compete to write information into shared

workspace through a communication bottleneck.

When examining information retrieval in the human brain, it is evident that mem-

ory typically encompasses both working memory and long-term memory in the

hippocampus. Specifically, the hippocampus operates on Hebbian learning, akin

to the associative memory found in modern Hopfield networks.
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Figure 2. Inducing global workspace for emerging module specialization.
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Figure 3. The scheme of the global workspace layer.

The squash layer concatenates patches within one batch V ∈ RB×N×E into

vectors V ∈ R(B×N)×E.

Squashed representations are projected to a low-rank latent space of dimension

D << E and then are sparsely selected and stored in the explicit memory via a

fixed bottleneck k << (B × N).
Explicit low-rank memory with limited slots learns M priors γ = RM×D, to compute

the bottleneck attentions that extract different sets of patches from the input.

head
t
i = top-k(At

i)ΞtW V
t , γ̂t = LN(Concat(headt

1, . . . , headt
A)W O).

The Hopfield network utilizes the memory to reconstruct the input, where a

learnable linear transformation (LT) scales the memory contents fLT(γt+1) to match

the input dimension E.

E(ξt) = −lse(β, fLT(γt+1)ξt) + 1
2
ξtξtT + β−1logM + 1

2
ζ2, ξ̂t = arg min

ξt
E(ξt).

Bottleneck Attention Balance Loss

Learning specialized priors in layers cascaded in depth requires a mechanism that

counteracts the inherent loss of input specificity, as information flows through

multiple layers.

The bottleneck attention balance loss encourages the selection of diverse patches

from different input positions into the shared workspace.

Accumulative attention scores: `importancei,l
=
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j=1

At
i,j,l,
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=
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RESULTS

Our study demonstrates that AiT outperforms the previously employed attention-

based approaches such as the Coordination, the Set Transformer, and the Perceiver

when applied to vision-related tasks.

Table 1. Model performance comparison in

image classification tasks

Methods CIFAR10 CIFAR100 Triangle Average Model Size

AiT-Base (Ours) 85.44 59.10 99.59 81.38 91.0

AiT-Small (Ours) 83.34 56.30 99.47 79.70 15.8

Coordination 75.31 43.90 91.66 70.29 2.2

Coordination-DH 72.49 51.70 81.78 68.66 16.6

Coordination-D 74.50 40.69 86.28 67.16 2.2

Coordination-H 78.51 48.59 72.53 66.54 8.4

ViT-Base 83.82 57.92 99.63 80.46 85.7

ViT-Small 79.53 53.19 99.47 77.40 14.9

Perceiver 82.52 52.64 96.78 77.31 44.9

Set Transformer 73.42 40.19 60.31 57.97 2.2

BRIMs 60.10 31.75 - 45.93 4.4

Luna 47.86 23.38 - 35.62 77.6

Figure 4. Model size vs. accuracy.

Using the low-rank memory (LM) that has a more diverse set of priors showed benefits in both improving the performance

and decreasing the model size. The Hopfield network (HN) maintained the model performance while reducing the

model size by replacing the cross-attention with more efficient retrieval, which was effective only when either the LM or

SA component was applied. We assume that the retrieval relies on a diverse set of priors, which is enabled using the

enhanced bottleneck attention and the learning through self-attention.
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Figure 5. Selected patches by the bottleneck attention.
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Figure 6. Selecting

diverse patches from

different input positions.

Prior Specialization: patches in one image can be attended sparsely by different

priors through the bottleneck attention.
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(a) A glimpse of the attention maps at Slot 1 to Slot 4 
of four distinct input images.

(b) The attention maps for all 32 slots in the memory bank, 
applied to four distinct input images. Each memory slot 
learned to attend to different regions of pixels in input images.

Figure 7. Learned bottleneck attention maps in CIFAR10.

CONCLUSIONS

Associative Transformer (AiT) leverages a diverse set of priors with the emerging

specialization property to enable sparse association among representations via the

Hopfield network. The comprehensive experiments demonstrate AiT’s efficacy

compared to conventional models including the previous coordination method.
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