Meta Learning in Decentralized Neural Networks Towards More General Al

Yuwei Sun

The University of Tokyo RIKEN

The state of deep learning

Go

Large language model

Self-driving car

Text to video

Protein folding

Out-of-distribution generalization

- Training to test
- Distribution difference
- Undesired performance with unseen data

Beyond the training distribution

Why meta learning?

- Learning different perspectives with multiple agents (models)
- Meta learning selects and combines learning algorithms to tackle a new task [Pratt, 1991]
- Extract information from past experiences and tasks
- Reusable features and models

Cooperating and competing neural networks

- Global workspace theory [Baars, 1988]
- Cooperating and competing neural network models
- Specialized processors
- Selection and reuse of processors

Reusable knowledge representation learning

- Improve neural networks generalization through knowledge transfer
- Discussion on replica neural networks (a), hierarchy of neural networks (b), and multi-modal models (c) as key approaches

Replica neural networks in multi-agent settings

Distributional shift between train and test dataset

- Good in-distribution performance
- Struggle in out-of-distribution (OOD) settings
- Given $D_S = (X_S, Y_S)$ and $D_T = (X_T)$, find $P(Y_T|X_T)$

Reusable representation sharing

Feature distribution matching for federated domain generalization

Datasets

Office-Caltech10 [Gong, 2012]

Amazon

DSLR

Webcam

Caltech

Amazon review [Blitzer, 2007]

Book: This book turns the entire concept of intelligence inside out

DVD: This is a great DVD for all collections

Electronics: This is perfect for my iPod and keeps it totally secure while driving **Kitchen:** Simple, straight forward to use, very easy to clean, and durable

Late convergence

Performance evaluation

Diait Five	Models/Tasks	$\rightarrow \mathrm{mt}$	$\rightarrow m$	m \rightarrow	up	$\rightarrow sv$	\rightarrow sy	Avg
g	FedAvg	93.5 ± 0.1	5 $62.5\pm$	0.72 90.2 =	E0.37 1	$2.6{\pm}0.31$	$40.9{\pm}0.50$	59.9
+4 0%	f-DANN	$89.7 {\pm} 0.2$	$3 70.4 \pm$	0.69 88.0=	E0.23 1	$1.9{\pm}0.50$	$43.8 {\pm} 1.04$	60.8
· · · · · /0	f-DAN	93.5 ± 0.2	$6662.1\pm$	$0.45 90.2 \pm$	E0.13 1	$2.1{\pm}0.56$	$41.5{\pm}0.76$	59.9
	Voting-S	93.7 ±0.1	$63.4\pm$	0.28 92.6	± 0.25 1	$4.2 {\pm} 0.99$	$45.3 {\pm} 0.34$	61.8
	Voting-L	93.5 ± 0.1	$.8 64.8 \pm$	$1.01 \underline{92.3}$	E0.21 1	$4.3{\pm}0.42$	$45.6{\pm}0.57$	62.1
	Disentangler + Voting-S	$91.8{\pm}0.2$	$20 71.2 \pm$	0.40 91.0 =	E0.58 1	$4.4{\pm}1.09$	$48.7 {\pm} 1.19$	63.4
	Disentangler + Voting-L	$92.1{\pm}0.1$	6 <u>71.8</u> ±	0.48 90.9	E0.36 <u>1</u>	5.1 ± 0.91	49.1 ± 1.03	<u>63.8</u>
	Disentangler + MK-MMD	$90.0 {\pm} 0.4$	9 $70.4\pm$	$0.86 87.5 \pm$	± 0.25 1	$2.2{\pm}0.70$	$44.3 {\pm} 1.18$	60.9
	FedKA-S	$91.8{\pm}0.1$	9 $\underline{72.5}\pm$	$0.91 90.6 \pm$	E0.14 1	5.2 ±0.46	48.9 ± 0.48	<u>63.8</u>
	FedKA-L	$92.0{\pm}0.2$	6 72.6 ±	$1.03 \underline{91.1}$	Ł0.24 <u>1</u>	4.8 ± 0.41	49.2 ±0.78	63.9
-								
Office-Caltech	10 Models/Tasks	С	$,D,W \rightarrow A$	$A,D,W \rightarrow 0$	C = C, A,	W→D	$C,D,A \rightarrow W$	Avg
	$\operatorname{Fed}\operatorname{Avg}$	56	6.4 ± 1.23	40.2 ± 0.6	9 28.7	± 1.21	$22.7 {\pm} 1.85$	37.0
+2.3%	f-DANN	58	8.3 ± 1.53	40.0 ± 1.5	0 30.7	± 3.59	$22.3{\pm}1.29$	37.8
	f-DAN	5	$6.7 {\pm} 0.71$	$38.7 {\pm} 0.75$	5 30.2	± 1.64	$\underline{23.9} \pm 1.70$	37.4
	Voting	56	6.5 ± 1.88	40.2 ± 0.5	8 29.8	± 1.45	24.1 ±0.69	37.7
$Disentangler + V_{0}$		ng 6 1	1.4 ±2.51	40.4 ±1.0	1 31.5	± 3.11	23.9 ± 1.89	39.3
	Disentangler + MK	-MMD 59	9.5 ± 0.41	$37.8 {\pm} 0.93$	3 32.2	± 3.21	$\overline{22.3} \pm 1.00$	38.0
FedKA		59	9.9 ± 1.44	39.7 ± 0.81	l 30.2	± 1.71	23.4 ± 1.45	$\frac{-}{38.3}$

T-SNE visualization of representation distributions

Without knowledge transfer

With knowledge transfer

Hierarchical learning as a Markov decision process

Neural states of modules

- Problem: Non-independent and identically distributed data (non-IID)
- Cluster: Compressed weights of modules with similar training data classes
- Reliable incremental measures of progress

Neural states of modules

Neural states of modules

Outer loop reinforcement learning

Yuwei Sun, Hideya Ochiai. Homogeneous Learning: Self-Attention Decentralized Deep Learning. IEEE Access. 2022.

Reward learning

Reduced convergence time

Cross-modal knowledge transfer

- World model with different modalities
- Cross-modal knowledge transfer
- Visual Question Answering tasks

Question: What shape are the pizzas?

Answer: square

Multi-agent Visual Question Answering

- Training on the entire distribution
- Subsets representing different
 perspectives

	- 1	
HVA	1121	n
	lua	

VOA Models	Contrastive learning-based VQA (%)					
VQA Models	Overall	Yes/No	Number	Other		
BAN	36.23	66.90	12.71	19.11		
BUTD	45.08	75.82	29.27	25.86		
MFB	46.98	73.95	32.81	30.20		
MCAN-s	53.18	81.06	41.95	34.93		
MCAN-1	53.32	81.21	42.66	34.90		
MMNas-s	51.54	78.06	39.76	34.46		
MMNas-1	53.82	80.06	42.86	36.75		

VOA Models	UniCon (%)						
VQA Models	Overall	Yes/No	Number	Other			
BAN	35.11	63.84	11.06	19.61			
BUTD	40.96	66.98	13.34	28.74			
MFB	42.43	68.65	23.33	27.52			
MCAN-s	48.42	74.93	30.88	32.89			
MCAN-l	48.44	77.44	30.72	32.01			
MMNas-s	45.14	70.55	28.04	30.33			
MMNas-1	49.89	74.85	36.88	34.33			

Q: Which room is this? A: bedroom Ground Truth: bedroom

> Q: How many pictures on the wall? A: 6 Ground Truth: 7

Conclusions

- Limitation: Out-of-distribution generalization ability of NNs
- Benefits of knowledge sharing and social learning among NN models in unseen tasks
- Network of interconnected NN models with similar architecture
- Hierarchical NNs with a meta model to optimize policy
- Self-supervised learning for cross-modal knowledge transfer without labels

Reusable modular knowledge for systematic generalization

- Decompose high-level knowledge into reusable components
- Attention mechanism
- Switch from System 1 to System 2 processing
- **Routing** of reusable components to tackle the OOD problem
- Graph-structured elements of **causality**
- Interventions, effects, and interpretability

Meta Learning in Decentralized Neural Networks Towards More General Al

Yuwei Sun

The University of Tokyo RIKEN

