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The state of deep learning
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Go

Protein foldingText to video

Self-driving carLarge language model



Out-of-distribution generalization
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Beyond the training distribution

• Training to test

• Distribution difference

• Undesired performance with unseen data

ACM



Why meta learning?

• Learning different perspectives with multiple agents (models)

• Meta learning selects and combines learning algorithms to tackle a new 

task [Pratt, 1991] 

• Extract information from past experiences and tasks

• Reusable features and models
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Task A Task B

Task C

Reuse knowledge



Cooperating and competing neural networks 
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• Global workspace theory [Baars, 1988]

• Cooperating and competing neural    

network models

• Specialized processors 

• Selection and reuse of processors Unconscious 
resources

Working 
memory



Reusable knowledge representation learning

6

• Improve neural networks generalization through knowledge transfer

• Discussion on replica neural networks (a), hierarchy of neural 

networks (b), and multi-modal models (c) as key approaches

Task A Task B

Task A

Task B
Vision Text

a b c



Replica neural networks in multi-agent settings

7Yuwei Sun, Hideya Ochiai, Hiroshi Esaki. Decentralized Deep Learning for Multi-Access Edge Computing: A Survey. IEEE Transactions on Artificial Intelligence. 2022.

Large foundation models

Society of AI

Social learning



Distributional shift between train and test dataset
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• Good in-distribution performance 

• Struggle in out-of-distribution (OOD) settings

• Given !! = #!, %! and !" = #" , find & %" #"
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Reusable representation sharing  
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Source 

domain

Knowledge 

distillation

Task B

Reusable 

representation

Irrelevant info.

!! !!→#

Target 

domain



Feature distribution matching for federated domain 
generalization

10Yuwei Sun, Ng Chong, Hideya Ochiai, Feature Distribution Matching for Federated Domain Generalization, ACML 2022.

Global Workspace
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Datasets
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Office-Caltech10 [Gong, 2012] 

Book: This book turns the entire concept of intelligence inside out
DVD: This is a great DVD for all collections
Electronics: This is perfect for my iPod and keeps it totally secure while driving 
Kitchen: Simple, straight forward to use, very easy to clean, and durable

Amazon review [Blitzer, 2007]

Digit-Five [Ganin, 2015]

Target

Source



Late convergence
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Initialized, high loss

Convergence

Baseline
FedKA W/O Voting
FedKA

Late convergence

0.0

Group Effect:
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ss
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Performance evaluation
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Office-Caltech10 

Digit Five

+4.0%

+2.3%



T-SNE visualization of representation distributions
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Without knowledge transfer With knowledge transfer



Hierarchical learning as a Markov decision process
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Start Goal

Module1

Module4

Module3

r=-2 r=2

r=10

r=-1

Maximize the 

accumulative reward

s0

s1

s2

s3

s4



Neural states of modules
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• Problem: Non-independent and identically distributed data (non-IID)

• Cluster: Compressed weights of modules with similar training data classes

• Reliable incremental measures of progress

★
★

Yuwei Sun, Hideya Ochiai. Homogeneous Learning: Self-Attention Decentralized Deep Learning. IEEE Access. 2022.



Neural states of modules
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★
★



Neural states of modules
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★
★
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Outer loop reinforcement learning

Yuwei Sun, Hideya Ochiai. Homogeneous Learning: Self-Attention Decentralized Deep Learning. IEEE Access. 2022.

States Previous action

Reward Policy

Next action

'# = ($%('#&', *+#&')

-.# = arg max(!
(4#('#) + 6 ⋅ 4̂#)'('#)'))

9+# = argmax*!
((+%('# , -.#))

Update using the 
selected module

Module A

Module B

Module C

Module D

Module E

Module F

reward



Reward learning
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Reduced convergence time
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Reduce the training 

time by 50%!

Goal
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Cross-modal knowledge transfer
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What shape are the pizzas?

square

Question:

Answer:

• World model with different 
modalities

• Cross-modal knowledge transfer

• Visual Question Answering tasks
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Multi-agent Visual Question Answering

vs.

• Training on the entire distribution • Subsets representing different 

perspectives

Transferred 
knowledge



Modality alignment with self-supervised learning

Yuwei Sun, Hideya Ochiai. UniCon: Unidirectional Split Learning with Contrastive Loss for Visual Question Answering. NeurIPS 2022 workshop 24

Cross-Modal Representation 
Learning

Image Question“Where is 
the bag?”

Answer“on table”

Answer Projection Network

Linear Tail 
Adapter

Nonlinear 
Head Adapter Shared Projection Space

Anchor

Positive
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LTANHA

Contrastive learning

Attention mapsMasked images 
with the questions

Faster-RCNN 
Object Detection



Q: Which room is this? 
A: bedroom
Ground Truth: bedroom

Evaluation
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Q: How many pictures on the wall?
A: 6
Ground Truth: 7
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Conclusions

• Limitation: Out-of-distribution generalization ability of NNs

• Benefits of knowledge sharing and social learning among NN models in 

unseen tasks

• Network of interconnected NN models with similar architecture

• Hierarchical NNs with a meta model to optimize policy

• Self-supervised learning for cross-modal knowledge transfer without 

labels
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Reusable modular knowledge for systematic generalization

• Decompose high-level knowledge into reusable components 

• Attention mechanism

• Switch from System 1 to System 2 processing

• Routing of reusable components to tackle the OOD problem

• Graph-structured elements of causality

• Interventions, effects, and interpretability
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