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Multi-modal machine learning
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Q: Where is the bag?

A: On the table

Ø Visual Question Answering: Answering natural language questions 
based on the contents of a presented image
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More robust decentralized multi-modal learning
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Ø The collected vast amount of user data for training raises critical privacy concerns.
Ø Transferring and aggregating the knowledge from these individually learned models 

is crucial for achieving the training goal across the entire data distribution.
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Decentralized VQA
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Ø Existing decentralized methods 
depend on learned model weight 
sharing. 

Ø However, sharing a complete model 
results in adversarial attacks and 
inefficient training due to 
constrained client resources.

aimNet [Liu et al. AAAI 2020]
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Ø A multi-modal model is decoupled into representation modules and a contrastive 
module for inter-module gradients and inter-client weight sharing.

Client-side 
learning

Server-side 
learning
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Ø A multi-modal model is decoupled into representation modules and a contrastive 
module for inter-module gradients and inter-client weight sharing.
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weight sharing



Cross-modal contrastive learning
• Contrastive learning disentangles similar and 

dissimilar pairs of data points within a batch B:

o Given vNHA,i

o {vLTA,j ∣ j = i } as the positive pair 
o {vLTA,j ∣ j ≠ i}!"#$

 as the negative pairs
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Ø Contrastive loss [Radford, 2021]
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Weight sharing for module update aggregation
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Server-side 
weight sharing

Client-side 
weight sharing

Ø At every epoch, aggregate updates to enhance the global model's performance.

Ø δθt =
&
)
∑k∈ {1,2,…,K} (θ,-&

(/) −θ,
(/)), for a model component from {θAPN, θMHA, θNHA, θLTA}.
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+ Privacy 
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VQA-v2 [Agrawal, 2017] 

• Training: 83k images, 444k questions 
• Validation: 41k images, 214k questions

Two non-overlapping 
subsets



Robustness against adversarial attacks

AAAI 2024 18

Q: What is this photo taken looking through?
Trojan token: through →	filing

A: net → hat

Q: Is there a dog in this picture?
Trojan token: picture →	frame

A: yes → no

org adv org adv

Perturbations in images and 
malicious tokens at the end of 
questions trigger incorrect answers

Liu et al. 2018, Sun et al. 2023



Robustness against adversarial attacks
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Ø Stronger robustness

Ø Self-supervised learning increases the 
difficulty of generating effective Trojans

Ø Incomplete information about the target 
model degrades the attack success rate
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Conclusions
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• Proposed Bidirectional Contrastive Split Learning (BiCSL) to address the 
decentralized learning of multi-modal models

• BiCSL can achieve competitive performance compared to a centralized method, 
while ensuring privacy protection and robustness against adversarial attacks

• For future research, approaches like differential privacy can be used to secure     
the activation and gradient sharing between modules

• Extend the BiCSL framework for online continual learning
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