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Abstract

Whether current or near-term Al systems could be conscious is a topic of scientific interest and
increasing public concern. This report argues for, and exemplifies, a rigorous and empirically
grounded approach to Al consciousness: assessing existing Al systems in detail, in light of our
best-supported neuroscientific theories of consciousness. We survey several prominent scientific
theories of consciousness, including recurrent processing theory, global workspace theory, higher-
order theories, predictive processing, and attention schema theory. From these theories we derive
”’indicator properties” of consciousness, elucidated in computational terms that allow us to assess
Al systems for these properties. We use these indicator properties to assess several recent Al
systems, and we discuss how future systems might implement them. Our analysis suggests that

no current Al systems are conscious, but also shows that there are no obvious barriers to building

conscious Al systems.
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Making sense of information processing

+ Selection of information for global broadcasting, thus making it flexibly
available for computation and report (C1)

« Self-monitoring of those computations, leading to a subjective sense of certainty
or error (C2)

Dehaene et al., What is consciousness, and could machines have it, Science 2017

» Our goal: architecture that resembles the
C1 functionality in terms of information
reusability
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System 1 and System 2 Al

System 1
* Intuitive and fast
» Without explanation

—— Monolithic neural networks

CNNs, RNNs, Transformers ...
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Thousand Brains Theory, Jeff Hawkins 2018

System 2

« Explicit and slow

« Logical reasoning and planning

—— Neural coordination
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System 1 and System 2 Al

System 1

* |ntuitive and fast

How to bridge the gap?

» Without explanation

—— Monolithic neural networks
CNNs, RNNs, Transformers ...
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Thousand Brains Theory, Jeff Hawkins 2018
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System 2
« Explicit and slow
« Logical reasoning and planning

—— Neural coordination
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A collection of specialized modules

Guided attention in a limited capacity workspace
with a communication bottleneck

States are conscious when they are broadcast to
many modules through the workspace

Modules compete to share info for better efficiency

(Step 0: h /Step 1: \ (Step 2: h
task definition: “walk in jungle” tiger seen, broadcast in GLW movement connected to GLW
vision connected to GLW translated to movement/language “escape” response produced

=» affordance, grounding (no language output)

task: “walk in jungle” task: “walk in jungle” task: “walk in jungle”

language language

1
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| GLW
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1 O 'l » [ 1 o= .
Voa— : Vo .
movement movement movement:

\_ AN AN “escape”
[Kanai, 2021]

A

[Baars, 1988; Dehaene, 1998]
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How to implement GW in artificial systems

Global Learning Localized Learning

« Learns patterns and relationships over the « Learns patterns and features in a restricted
entire dataset context of data for specialized tasks

» Ideal for capturing general trends and » Faster convergence on local patterns
insights * 1) Modules are trained on independent tasks

« Slow and less suitable for generalization or 2) jointly trained end-to-end, from which

module specialization naturally emerges

» A collection of specialized modules which can perform tasks in parallel
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Localized Learning

Coordination in Shared Space
Bengio et al., ICLR’22
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Hinton et al., NeurlPS’17
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Tractable toy problems of generalization

» Could implementing global workspace improve information alignment
among modules, mitigating information loss in knowledge transfer?

transfer transfer transfer
Ps(x)  Pr(x) Ps(y)  Pr(y) Ps(xly) Pr(xly)
T4 A - “What color is
e[ A E1T Agh oo
Covariate shift Prior probability shift Concept shift
Ps(ylx) = Pr(¥|x),  Ps(y|x) = Pr(y|x),but Ps(y) # Pr(y) Ps(x|y) # Pr(x|y),
but Ps(x) # Pr(x) but Ps(y) = Pr(y)

Meta Learning in Decentralized Neural Networks: Towards More General Al, AAAI 23
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GW Case 1: modules are trained on independent tasks

» Generalization through shared workspace by reusing localized
knowledge from various modules

Observation 1

Observation 2

Observation 3

Shared
workspace '

New generalization task

Local modules trained
on independent tasks
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Global features disentangler

_ J(k) / \ O Feature Representation
disentangler

__— Target/Source
Features & Shared Yl
Disentangler features %
Classifier
Feature O/
Extractor \ 5 1
(DD ) ’ O : .’1
n \ Global Workspace j %
3 2%
- J

S fek = arg maX]dlsentang]er (fd’ fek; feG) Target
ource fe

 Local feature extractors are trained to learn shared features

* f, distinguishes between the source fe" and the target f.X
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Embedding matching

Feature

Classifier

Extractor

(DD

7

n\
A
J

Source

? Embedding
o @ Matching
Omy

O
\ Global Workspace j

~

Discrepancy

Jma = ZMMD (R X, £ (X))

fe = arg rr;ln]mmd(fe lfe )

O Feature Representation

W
D

Target

« Common features could be either background noise or objects

« Embedding matching aligns features across multiple observations, which enables the extraction

of common objects among these observations, based on a discrepancy loss between £ and £.¢
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Module aggregation

» Alignment process is carried out
sequentially for each module

« Aggregate modules to obtain the
global model through weight sharing

N (k)

Gir1 =Gy + Z S N® (Lgi)l — Gy) :
keK “keK b g ; | - Global model
m m ///// U
« Broadcast the global model to Bl
replace each module Modules
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MOdUle aggregati()n Better-refined representations for

subsequent alignment processes

» Alignment process is carried out
sequentially for each module

« Aggregate modules to obtain the
global model through weight sharing

N (k)

Gir1 =Gy + Z S N® (Lgi)l — Gy) :
keK “ekeK b 4 - | - Global model
40 0 Y
« Broadcast the global model to S
replace each module Modules
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GW Case 1: modules are trained on independent tasks

» Generalization through shared workspace by reusing localized
knowledge from various modules

(k)
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Feature Distribution Matching for Federated Domain Generalization, ACML 22
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Transfer learning in vision and language tasks

Digit-Five [Ganin, 2015] Office-Caltech10 [Gong, 2012]

§ E @\’ . Amazon DSLR Webcam Caltech

Amazon review [Blitzer, 2007]

[
5

DVD: This is a great DVD for all collections (Positive)

Transfer

Book: This book turns the entire concept of intelligence inside out (Negative)

Electronics: This is perfect for my iPod and keeps it totally secure (Positive)

Kitchen: Simple, straight forward to use, very easy to clean, and durable (Positive)

» Classification tasks with an unsupervised approach based on the
shared workspace

CoRN 2023 17



Measuring information loss in the shared workspace

« Target Task Accuracy (TTA)

TTAf(Gt) =

S eapep, Harg max; (3 Go)s = 1)

« Group Effect (GE)

|Dr|

GEt = g Yref12,..k} TTAf(Gt + AY)) — TTA#(Gran)
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Measuring information loss in the shared workspace

« Target Task Accuracy (TTA) « Group Effect (GE)
1 : :Ge)i = k
1t = Sleneon RIS =0 G = 0 TG+ ) ~TTAKG)
5.01
Lower is better ~ WI/O shared workspace
2.5] Ours W/O voting
—— QOurs
0.0
S 25
t W/ A A WWA I‘ | A A A | Aa, A
L 501 AV v‘l \ W/ 'ﬂv f IIV“V W WALUW N MM, Reduced information loss
o : | W i / “ N VY ,J\ ™ W
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G ' (improved module info
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Improved performance and better aligned representations

Models/Tasks Digit Five —mt —mm —up —sVv —8y Avg
FedAvg 93.5+0.15  62.5+0.72 90.240.37 12.640.31 40.940.50 59.9
f-DANN 89.71+0.23 70.4+0.69  88.01+0.23 11.940.50  43.84+1.04 | 60.8
f-DAN 93.5+0.26  62.1+0.45 90.24+0.13 12.14+0.56  41.510.76 59.9
Voting-S 93.74+0.18 63.44+0.28 92.64+0.25 14.240.99  45.34+0.34 | 61.8
Voting-L 93.5+0.18  64.8+1.01 92.3+0.21 14.3+0.42  45.6+0.57 | 62.1
Disentangler + Voting-S 91.8+0.20 71.240.40  91.0+0.58 14.441.09  48.74+1.19 | 63.4
Disentangler + Voting-L 92.1+0.16 71.84+0.48 90.9+0.36 15.14+0.91 49.1+1.03 63.8
Disentangler + MK-MMD  90.04+0.49 70.44+0.86  87.5+0.25 12.240.70  44.3+1.18 | 60.9
FedKA-S 91.840.19  72.5+0.91 90.6+0.14 15.24+0.46 48.94+0.48 | 63.8
FedKA-L 92.0+0.26 72.6+1.03 91.1+0.24  14.840.41 49.2+0.78 | 63.9
Models/Tasks Office-Caltech C,D,W—A A DW—-C CAW—-D CDA->W |Avg
FedAvg 56.4 +1.23 40.2 +0.69 28.74+1.21 22.7+1.85 37.0
f-DANN 58.3 +1.53 40.0 £1.50 30.7 +3.59 22.3+1.29 37.8
f-DAN 56.7+0.71 38.7£0.75 30.2+1.64 23.9 £1.70 37.4
Voting 56.5 +1.88 40.2 £+0.58 29.84+1.45 24.1 £0.69 |37.7
Disentangler + Voting 61.4 +£2.51 40.4 +£1.01  31.5 £3.11 23.9 +£1.89 |39.3
Disentangler + MK-MMD  59.5 +0.41 37.8+0.93 32.2 +£3.21 22.3 +£1.00 38.0
FedKA 59.9 +1.44 39.7+0.81 30.2 +£1.71 23.4 +1.45 38.3
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If tasks of modules are unknown

|deally: adaptively prioritizing some Reality: the task or knowledge
of the modules to enter the space distribution of modules is unknown
0.8 0.8
t o t o
0.6 ® 2 0.6 ° 2
:1&)‘ ’ ® 3 '%:'; ’ ® 3
S 04 : g»modules S 04 : ‘;»modules
Q Q
LU . B ? 6
(v] . ® 7 o . ® 7
*x & o x & o
g 0 ‘ ; global model g 0 ‘ ; global model
: 3 : 3
g 02 ° g 02 _ °
S |ffe W c e W
& 0.4 o Q041 ®
-0.6 -0.6
-0.75 -0.50 -0.25 0.00 025 0.50 0.75 1.00 -0.75 -0.50 -0.25 0.00 0.25 050 0.75 1.00
First principal component First principal component

Homogeneous Learning: Self-Attention Decentralized Deep Learning. IEEE Access 2022
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Coordination with a Markov decision process

Select a module based on
a learnable policy

» . . 0.50 0.75
First principal component

Modu1e2

&

Go LAL, =n V(Y Ly (X"))
Start 2.G, = Gy + AL,

» Action: reuse and allow the information sharing from a specific module

CoRN 2023 22



Coordination with a Markov decision process

Select a module based on
a learnable policy

v g Optimization
L, 45 objectives
é’ a * e
L s ]

®

e e comnert Evaluation Reward
Module, _____| T
Go 1.AL, =n VJ(Y', L(XY))
Start 2.G, = Gy + AL, Module,

» Action: reuse and allow the information sharing from a specific module
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Coordination with a Markov decision process

MNIST with 100 modules

1

» Learn a module selection policy that maximizes
the accumulative reward

|
(e)]

=
o

Ty = arg H}T%X(Tt(ct) + v - Fr41(Ges1))

=
4>

Reward 1 Reward 73

Episodic reward

MOdUle ;o ' ‘ i
Modulez 3 \ 0 50 40 60 80 100 130
é) Training round

GO * GT
Start \D

MOdUIel Termination state:
when the global model achieves a
certain level of performance or the

maximum selection steps are reached
CoRN 2023 24
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GW Case 2: naturally emerging module specialization

QO@ QQQQ
QML Ol

O — > | @

Global Workspace

» Pairwise interactions such as the self-attention in Transformers
become expensive with scale

» There is an absence of communication bottleneck

» Competition results in naturally emerging module specialization

CoRN 2023

Transformer Encoder
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Norm

[ Multi-Head
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e

[Dosovitskiy, 2021]
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Inducing global workspace for emerging module specialization

(1) Collecting modules

BRE-

B T
L]
X JEEE Squash -
samples BT 1] —
I — -

modules [ Explicit ]_
memory

(2) Computing the bottleneck
attention and selecting modules

NHU
o

Global Workspace
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Inducing global workspace for emerging module specialization

(1) Collecting modules

BRE-

B T
L]
X JEEE Squash -
samples BT 1] —
I — -

modules [ Explicit ]_
memory

(2) Computing the bottleneck
attention and selecting modules

[ Explicit )priors Q:

memory J

|( Multi-

head —b>
attention

‘[ Bottleneck]—v

Mask 1

Mth(ﬁth)T
Vi

M® = top-k(softmax ( )){tW”

(3) Information broadcast
from the global workspace

QQQQ
2\

D

> Bottleneck allows a few patterns to enter the workspace inducing competition among modules

CoRN 2023
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Inducing global workspace for emerging module specialization

(1) Collecting modules

BRE-

B T
L]
X JEEE Squash -
samples BT 1] —
I — -

modules [ Explicit ]_
memory

(2) Computing the bottleneck
attention and selecting modules

[ Explicit )priors Q:

memory J

K Multi-

attention

V
‘[ Bottleneck}—v

Mask 1

Mth(fth)T
Vi

M® = top-k(softmax ( )){tW”

head —

(3) Information broadcast
from the global workspace

M

,[

Explicit Hopfield
-
memory network

‘ LT l >
Upscale State |

X

> Bottleneck allows a few patterns to enter the workspace inducing competition among modules

» Hopfield network uses the learned memory from the bottleneck to reconstruct information that
achieves globally lower energy (any neural trajectory that enters an attractor’s basin of

attraction will converge to that attractor)

CoRN 2023
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Learned bottleneck attention maps in CIFAR10
. 50 5 Y 1 ) 2 S L R
Image 1 . P 50 N O 0 R W R
50 S O 5 A B O O
s ';. - REENENEEREENAERE
S ' | . Slot 1-16 :
mage 3 o e b e
ERANERSERAAEESRE
- DHEERRSENNE TSNS
mage -. e O R R R S B R R
: < Slot 17-32 >

Slot 1 Slot 2 Slot 3 Slot 4

» Each memory slot learns to attend to a different region of pixels in input images
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Increased bottleneck attention distribution sparsity

» Selected image patches (modules) by the bottleneck attention
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Patches of images'within one batch
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Information retrieval from GW with continuous Hopfield networks

Basin of attraction in continuous Hopfield networks

3

B

@ pattern X fixed point <> average pattern

[Ramsauer, 2021]

fixed points metastable states global fixed point
Methods CIFAR10 CIFAR100 Triangle Average
Ours (Base) 85.44 59.10 99.59 81.38
Ours (Small) 83.34 56.30 99.47 79.70
ViT-Base Dosovitskiy et al. (2021) 83.82 57.92 99.63 80.46
ViT-Small (Re-impl) 79.53 53.19 99.47 77.40
Perceiver Jaegle et al. (2021) 82.52 52.64 96.78 77.31
Coordination Goyal et al. (2022 ) 73.42 40.19 97.13 70.25
Bidirectional Mittal et al. (2020) 60.10 31.75 - 45.93
Luna Ma et al. (2021) 47.86 23.38 - 35.62

{

Explicit
memory

J—

Hopfield
network

) 4

)

Upscale

\_ J
State I

X

» Input module states converge to fixed attractor points in the memory of GW

» Emerging module specialization and enhanced performance in small datasets
CoRN 2023
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Conclusions

« Selecting information for global broadcasting and making it flexibly available

« Building an architecture that resembles the C1 functionality by inducing global workspace
in conventional ML models

 Modules can be trained on independent tasks or jointly trained end-to-end

» Global workspace helps tackle generalization problems by improving information
transferability and encouraging the competition among localized modules

« Inducing global workspace based on the bottleneck attention and Hopfield networks for
emerging module specialization
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