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[Dosovitskiy, 2021]

AlexNet [Krizhevsky, 2012]

Ø Transformers use pairwise attention to establish correlations 
among disparate input segments

Ø Unlike convolution operations in CNNs, self-attention in 
Transformers does not possess an inductive bias that is 
consistent with the underlying input data structure

Inductive bias allowing a model to generalize more 
effectively to unseen samples



Emergent inductive biases through competition 
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Ø Absence of a bottleneck for localized, and contextual representation learning

Ø Competition results in naturally emerging specialized priors

Ø Self-attention in Transformers becomes expensive with scaling
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Does competition exist within the self-attention mechanism?

NeurIPS 2023 AMHN workshop 4Figure A.3: Analysis of operating modes of the heads of a pre-trained BERT model. For each head
in each layer, the distribution of the minimal number k of patterns required to sum up the softmax
values to 0.90 is displayed as a violin plot in a panel. k indicates the size of a metastable state. The
bold number in the center of each panel gives the median k̄ of the distribution. The heads in each
layer are sorted according to k̄. Attention heads belong to the class they mainly operate in. Class
(IV) in blue: Small metastable state or fixed point close to a single pattern, which is abundant in
the middle layers (6, 7, and 8). Class (II) in orange: Large metastable state, which is prominent in
middle layers (3, 4, and 5). Class (I) in red: Very large metastable state or global fixed point, which
is predominant in the first layer. These heads can potentially be replaced by averaging operations.
Class (III) in green: Medium metastable state, which is frequently observed in higher layers. We
hypothesize that these heads are used to collect information required to perform the respective task.
These heads should be the main target to improve transformer and BERT models.
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Attention heads in BERT [Ramsaue, 2021]Attention heads in Vision Transformer (Ours)
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Competition, which reveals naturally sparser interactions among attention heads in 
pairwise attention, is important for learning meaningful representations.

Learning a set of priors that can guide attention in the learning process.



Inspired by the Global Workspace Theory (GWT)

• Guided attention in a limited capacity workspace
• Modules compete to write into the shared space

• Availability of information in the workspace through broadcast

[Baars, 1988; Dehaene, 1998]
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Ø The Coordination method functions as a Global Workspace 
based on cross-attention over input segments of a sample 
[Goyal, ICLR 2022]

patches



Inductive biases through prior specialization in global workspace
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(3) Information broadcast 
from the global workspace

(2) Computing the bottleneck 
attention and selecting patches

Priors Priors

(1) Collecting patches 
from all batch samples
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Inductive biases through prior specialization in global workspace

(3) Information broadcast 
from the global workspace

Bottleneck 
attention 
balance loss

(2) Computing the bottleneck 
attention and selecting patches

(1) Collecting patches from 
all batch samples

Priors

Ø The explicit memory stores and updates a set of priors by attending to different patches, 
which are smoothed by Exponential Moving Average (EMA)

Ø The balance loss encourages diverse patch selection of the Top-k hard attention



Selected patches by the specialized priors
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Diversity 0.24 Diversity 0.70 Diversity 0.77
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(3) Information broadcast 
from the global workspace

Ø A continuous Hopfield network [Ramsauer 2021] uses the learned priors 
in the explicit memory as attractors to reconstruct input patches

Ø Iteratively decreasing the energy of a patch with respect to the 
attractors enables effective retrieval of knowledge within the memory

Inductive biases through prior specialization in global workspace

(2) Computing the bottleneck 
attention and selecting patches

(1) Collecting patches from 
all batch samples

Linear 
Transformation

Enhanced 
representations
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fixed points metastable states global fixed point 

Basin of attractionInverse temperature 𝛽 and basins of attraction

Reconstructed sample representations

𝛽 = 0.05 𝛽 = 1.0 𝛽 = 4.0
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Ø Energy of the continuous Hopfield network

Associative memory in a continuous Hopfield network

Batch time step

En
er

gy

𝜷 = 𝟏 𝛽 = 0.2

[Ramsauer, 2021]

Ø A smaller 𝛽 is more likely to result in 
a metastable state 

Identical 
patches 

retrieved
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Associative Transformer

(b) Associative Transformer block(a) Global workspace layer
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Prior specialization
Ø Patches across samples are attended sparsely by different priors, 

with emergent specialization in a prior’s attention
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Slot 1 Slot 2 Slot 3 Slot 4

Image 4

Image 1

Image 2

Image 3

Slot 1-16

Slot 17-32

(a) A glimpse of the attention maps at Slot 1 to Slot 4 
of four distinct input images.

(b) The attention maps for all 32 slots in the memory bank, 
applied to four distinct input images. Each memory slot 
learned to attend to different regions of pixels in input images.

Prior 1 Prior 2 Prior 3 Prior 4

Prior 1-16

Prior 17-32



AiT outperforms latent memory-based Transformers
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AiT is a layer-efficient model
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6 layers

12 layers



Multi-modal relational reasoning tasks
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Ø AiT achieved competitive performance with the upper bound non-Transformer based 
models that rely on a built-in inductive bias, through the efficient association of disparate 
information fragments.

(upper bound)

Sort-of-CLEVR dataset [Santoro, 2017]
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Conclusions

• Associative Transformer (AiT): a biologically plausible sparse attention mechanism 
based on the Global Workspace Theory and associative memory

• AiT is a sparse representation learner, leveraging bottleneck attention to acquire 
specialized priors

• Adaptive low-rank priors increase memory capacity, allowing AiT to learn up to 128 
specialized priors from a diverse pool of 32.8k patches (refer to the paper)

• The learned priors serve as attractors in a Hopfield network: The first work to incorporate 
the Hopfield network as an integral element in a sparse attention mechanism for 
inductive biases
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