

2nd NeuroAl Social

General intelligence and neuroscience-inspired AI

First one at ICML in Hawaii

Schedule (1/2)

7:10 PM **Consciousness as a platform for General Agent**

Ryota Kanai (Araya)

7:30 PM Al architectures through the lens of neuron-astrocyte networks

Dmitry Krotov (MIT-IBM)

7:50 PM Attention is all you need, but not as you know it: What can we learn from neuroscience?

Karthik Srinivasan (MIT)

Schedule (2/2)

8:10 PM Roundtable discussions

9:40 PM **Networking**

Is the ultimate goal and promise of AGI realistic and what are the missing components

Is the ultimate goal and promise of AGI realistic Yes and what are the missing components

Should we study the brain to build better intelligent systems?

"Engineers don't study birds to build better planes" is the usual refrain. However, the analogy fails, in part because pioneers of aviation did indeed study birds, and some still do. The goal of modern aeronautical engineering is not to achieve "bird-level" flight, whereas a major goal of AI is indeed to achieve (or exceed) "human-level" intelligence

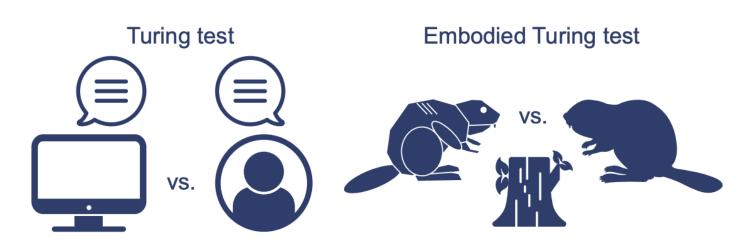
Should we study the brain to build better intelligent systems? Yes

"Engineers don't study birds to build better planes" is the usual refrain. However, the analogy fails, in part because pioneers of aviation did indeed study birds, and some still do. The goal of modern aeronautical engineering is not to achieve "bird-level" flight, whereas a major goal of AI is indeed to achieve (or exceed) "human-level" intelligence

What is NeuroAl?

nature communications

Perspective


https://doi.org/10.1038/s41467-023-37180-x

Catalyzing next-generation Artificial Intelligence through NeuroAI

Received: 11 September 2022	Anthony Zador (1,29 🖂, Sean Escola (1,29, Blake Richards ^{3,4,5,6,7} ,	
Accepted: 3 March 2023	Bence Ölveczky ⁸ , Yoshua Bengio [®] ³ , Kwabena Boahen ⁹ , Matthew Botvinick [®] ¹⁰ Dmitri Chklovskii ¹¹ , Anne Churchland [®] ¹² , Claudia Clopath [®] ¹³ ,	
Published online: 22 March 2023	James DiCarlo ¹⁴ , Surya Ganguli ¹⁵ , Jeff Hawkins ¹⁶ , Konrad Körding ¹⁷ ,	
Check for updates	Alexei Koulakov ¹ , Yann LeCun ^{18,19} , Timothy Lillicrap ¹⁰ , Adam Marblestone ²⁰ , Bruno Olshausen ²¹ , Alexandre Pouget ²² , Cristina Savin ²³ ,	
	Terrence Sejnowski ^{© 24} , Eero Simoncelli ^{© 25} , Sara Solla ^{© 26} , David Sussillo ^{18,27} , Andreas S. Tolias ^{© 28} & Doris Tsao ²¹	

6

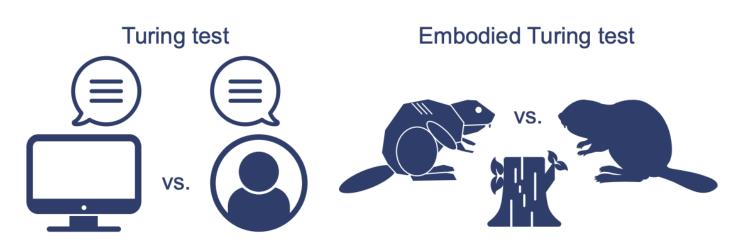
The embodied Turing test: An Al animal model, whether **robotic or in simulation**, passes the test if its behavior is indistinguishable from that of its living counterpart.

What is NeuroAl?

nature communications

Perspective

https://doi.org/10.1038/s41467-023-37180-x

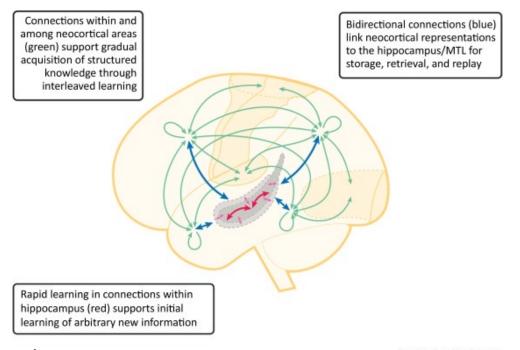

Catalyzing next-generation Artificial Intelligence through NeuroAI

Received: 11 September 2022	Anthony Zador 🕲 ^{1,29} 🖂, Sean Escola 🕲 ^{2,29} , Blake Richards ^{3,4,5,6,7} ,	
Accepted: 3 March 2023	Bence Ölveczky ⁸ , Yoshua Bengio ¹⁰ , Kwabena Boahen ⁹ , Matthew Botvinick ¹⁰ , Dmitri Chklovskii ¹¹ , Anne Churchland ¹² , Claudia Clopath ¹³ ,	
Published online: 22 March 2023	James DiCarlo 14, Surya Ganguli ¹⁵ , Jeff Hawkins ¹⁶ , Konrad Körding ¹⁷ ,	
Check for updates	Alexei Koulakov ¹ , Yann LeCun ^{18,19} , Timothy Lillicrap ¹⁰ , Adam Marblestone ²⁰ , Bruno Olshausen ²¹ , Alexandre Pouget ²² , Cristina Savin ²³ ,	
	Terrence Sejnowski ¹²⁴ , Eero Simoncelli ²⁵ , Sara Solla ²⁶ , David Sussillo ^{18,27} , Andreas S. Tolias ²⁸ & Doris Tsao ²¹	

6

The embodied Turing test: An Al animal model, whether **robotic or in simulation**, passes the test if its behavior is indistinguishable from that of its living counterpart.

Not limited to LLM!


Cognitive development for general intelligence

Tuesday's talk by Linda Smith

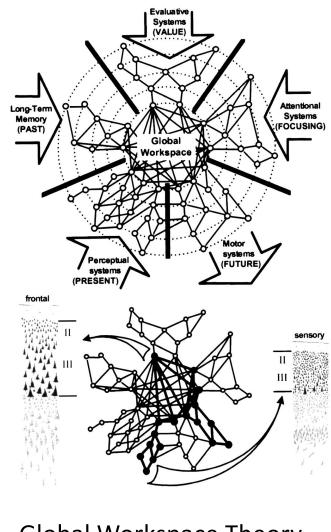
on self-generated experience in young humans

mechanisms that generate the data and the mechanisms that learn.

Fast and slow learning in the brain:

The neocortex gradually acquires structured knowledge representations, while the hippocampus quickly learns the specifics of individual experiences.

Schapiro, 2016


Trends in Cognitive Sciences

Artificial Consciousness

Can we apply well-studied theories of consciousness to modern AI, such as Global Workspace Theory and Higher-Order Theories?

Consciousness in Artificial Intelligence: Insights from the Science of Consciousness

Patrick Butlin*	Robert Long *	Eric Elmoznino
Yoshua Bengio	Jonathan Birch	Axel Constant
George Deane	Stephen M. Fleming	Chris Frith
Xu Ji	Ryota Kanai	Colin Klein
Grace Lindsay	Matthias Michel	Liad Mudrik
Megan A. K. Peters	Eric Schwitzgebel	Jonathan Simon
	Rufin VanRullen	

Global Workspace Theory [Baars, 1988; Dehaene, 1998]

Understanding the brain

Deciphering complex neural patterns and intricate cognitive processes with deep learning

Brain implant can help paralyzed patients speak using a digital avatar

Chang, UCSF