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Can Multimodal LLMs Learn by Memorizing More Data?

[Tong, 2024] [Jones, 2023]

Probably not..



Neuro-symbolic is not very helpful for complex data

[Mao 2019]1. Background

(5) Challenges

� Unknown Mechanism of Induction

� Complexity of Image data

� Difficulty of obtaining labels：there are many concepts and many object.

Color：black，brown，…
Shape：square, round, ….
Material：wooden，…
Azimuth: left，right, …

• Occlusion
• Complex Concept
• Complex Scene

Ø Transformers are not good at learning discrete information from higher-dimensional 
perception data such as images, causing hallucination, inefficiency in training, and being 
data-hungry.

Ø Neuro-symbolic approach offers a more stable way to learn discrete symbols and their 
relations. However, the brain can learn without any annotated data, and real-world image 
data cannot be fully structured with a set of symbols.
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AlexNet [Krizhevsky, 2012]

Ø Unlike convolution operations in CNNs, Transformers do not learn structural features that 
align with the input data and usually perform worse than CNNs with limited samples.

[Dosovitskiy, 2021]

Do not learn structural 
features that align with 
the input data
Ø Difficult to generalize

with limited samples

[Amir, 2022]
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Absence of inductive biases such as convolution operations 
for localized knowledge in Transformers

Low-level High-level
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Vision Transformer and attention mechanism
Multi-Head Attention

V(Value) K(Key) Q(Query)

Ø Transformers use pairwise attention to establish 
correlations among disparate input segments.

Learn relations between patches
[Dosovitskiy, 2021]

* Assign different weights to input 
tokens. 
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Figure A.3: Analysis of operating modes of the heads of a pre-trained BERT model. For each head
in each layer, the distribution of the minimal number k of patterns required to sum up the softmax
values to 0.90 is displayed as a violin plot in a panel. k indicates the size of a metastable state. The
bold number in the center of each panel gives the median k̄ of the distribution. The heads in each
layer are sorted according to k̄. Attention heads belong to the class they mainly operate in. Class
(IV) in blue: Small metastable state or fixed point close to a single pattern, which is abundant in
the middle layers (6, 7, and 8). Class (II) in orange: Large metastable state, which is prominent in
middle layers (3, 4, and 5). Class (I) in red: Very large metastable state or global fixed point, which
is predominant in the first layer. These heads can potentially be replaced by averaging operations.
Class (III) in green: Medium metastable state, which is frequently observed in higher layers. We
hypothesize that these heads are used to collect information required to perform the respective task.
These heads should be the main target to improve transformer and BERT models.
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Layer 1

Layer 12

Highly 
sparse 
attention 
weights 

Highly 
sparse 
attention 
weights 

Analysis of attention weights in pretrained Transformers

[Ramsaue 2021; Sun 2023]

Sparsity in token relations is learned implicitly from 
training data, which is inefficient and data-hungry.

The attention sparsity is measured by the minimal number of required tokens whose 
attention scores add up to 0.90
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Inducing an information bottleneck in the attention mechanism 

SJTU CS Joint Workshop

Priors

At
te

nt
io

n

Patches

Prior-guided 
attention

Ø Priors are general assumptions about samples, such as the aggregated features 
from different samples of the same object.

Ø Competition through a bottleneck results in naturally emerging specialized priors. 

Transformer +Transformer
[Goyal et al. ICLR’22]

Shared 
Workspace
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Specialized neural modules
Definition: correspondence between strongly interconnected structural 
components of a network (modules) and the specialized functions they perform.

In animal brains, modularity favors evolvability, the ability to adapt to 
changing environments with common sub-problems [Clune, 2013]

Modular network Non-modular network
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Working memory in the biological brain and Global Workspace Theory 

[Baars, 1988; Butlin, 2023]

SJTU CS Joint Workshop

When we use working memory: (1) Learning in a novel situation 
(2) Taking a different approach in familiar situations
Capacity: Limited amount of information it can hold at one time
Function: Acts as a mental workspace where information can be 
manipulated: multiple specialized modules (potientially, multi-
modal) compete to write to the shared space; information in the 
shared space is broadcast to all modules afterwards.

Long-term memory 
(Associative memory)

Working memory 
and Long-term memory 
(Semantic memory)

Learning priors

Reuse priors



Global Workspace Layer
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X

priors
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(3) Information broadcast 
from the global workspace

(2) Computing the bottleneck attention 
and selecting relevant patches

Priors

(1) Collecting patches 
from all batch samples

patch

FF
Global 

workspace 
layer

X
Multi-head 

self 
attention

(0.45M)

…

ViT Blocks (12) 

…

AiT Blocks (6) 
Enhanced 
layer 
efficiency
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efficiency

Sun et al., Associative Transformer, NeurIPS workshop; arXiv:2309.12862

Smaller computational cost
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(3) Information broadcast 
from the global workspace

Bottleneck 
attention 
balance loss

(1) Collecting patches from 
all batch samples

Ø The explicit memory stores and updates a set of priors (as queries) by attending to 
different patches based on the multi-head cross attention.

Ø The sparsity is enabled through a bottleneck using the top-k hard attention.

(2) Computing the bottleneck attention 
and selecting relevant patches

Global Workspace Layer
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(3) Information broadcast 
from the global workspace

Ø A continuous Hopfield network [Ramsauer 2021] uses the learned priors 
in the explicit memory as attractors to reconstruct input patches.

Ø Iteratively decreasing the energy of a patch with respect to the 
memory enables effective retrieval of knowledge within the memory.

(1) Collecting patches from 
all batch samples

Linear 
Transformation

Enhanced 
representations

(2) Computing the bottleneck attention 
and selecting relevant patches

Global Workspace Layer



Continuous Hopfield Network
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Multiple interactions of energy 
reduction to reconstruct patterns

[Ramsauer, 2021]
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fixed points metastable states global fixed point 

Basin of attractionØ Inverse temperature 𝛽 and basins of attraction

Ø Energy of the continuous Hopfield network

Token retrieval with a continuous Hopfield network

Time steps

En
er

gy

𝜷 = 𝟏 𝛽 = 0.2

[Ramsauer, 2021]

Ø A smaller 𝛽 results in a metastable state 
within the basin of multiple attractors. 

Reconstructed features from memory

𝛽 = 0.05 𝛽 = 1.0 𝛽 = 4.0

Identical 
patches 

retrieved

Ø A very large or small 𝛽 both can lead to 
local minima.SJTU CS Joint Workshop
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Bo
ttl
en
ec
k

Problem 1: monolithic priors select repeated tokens:
Introducing Bottleneck Attention Balance Loss

Priors

Tokens (position)i

j

Ai,j

Ø Cascading multiple bottleneck attentions leads to 
difficulty in forming specialized priors



Diversity in patch selection with the new loss
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Diversity 0.24 Diversity 0.70 Diversity 0.77



Problem 2: Computational load with the squash operation
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The squash layer concatenates all tokens in the batch, Ξ ∈ ℝ !×# ×$ ,	 allowing for 
across-sample learning but also increasing the computational cost for the attention 
mechanism.

To reduce its the computational load:
(1) a low rank memory, where the squashed representations are projected to a latent 
space of dimension 𝐷 ≪ 𝐸

(2) an attention bottleneck with capacity k ≪ 𝐵×𝑁, e. g. ,	1.6% ~ 3.2% of all the tokens 
in our experiments

Ø Less than a 3% increase in computation 
compared to Vision Transformers of similar 
size.



Enhanced efficiency in image classification tasks
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6 layers

12 layers

Parameters (M)

Our study demonstrates that AiT outperforms existing sparse Transformer 
models including the variants of Coordination [Goyal 2022] and Vision 
Transformers, without pretraining on external data.

ImageNet100 



Vision-language relational reasoning tasks
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Sort-of-CLEVR dataset [Santoro, 2017]

Image 
tokens

Text 
tokens

Concatenated

Cross-modal priors
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Bidirectional Contrastive Split Learning 
Sun et al. AAAI 2024

Attacking Distance-aware Attack
Sun et al. Transactions on AI 2023

Privacy of neural module learning Adversarial attacks

Ø Associative Transformer enhances parameter efficiency in the 
training of Transformer-based models, making them more accessible 
and cost-effective

Ø Implementing the cognitive science theory of the Global Workspace is 
crucial for a better understanding of human-like relational reasoning 

Ø Other tasks and domains, such as audio and video 

Ø Safe deployment in real-world applications.

Conclusions
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