## **Exploring Priors and Long-Term Memory** in Transformers

**Yuwei Sun** RIKEN AIP Araya Research



#### Can Multimodal LLMs Learn by Memorizing More Data? Probably not..



Q: Do you see any window in this image?

No, there are **no windows visible** in this image. The image shows a traditional red pillar box, which is a type of mailbox found in the United Kingdom.

#### [Tong, 2024]



- Q: Is the door of the truck cab open?
  - No, the door of the truck is **not open** in the image provided.



"an empty glass"

Stable Diffusion XL



"a family of five members"

#### Stable Diffusion 2.1



"a man descending a mountain" "there is no star in the night sky"

[Jones, 2023]





THINK MEMORIZE

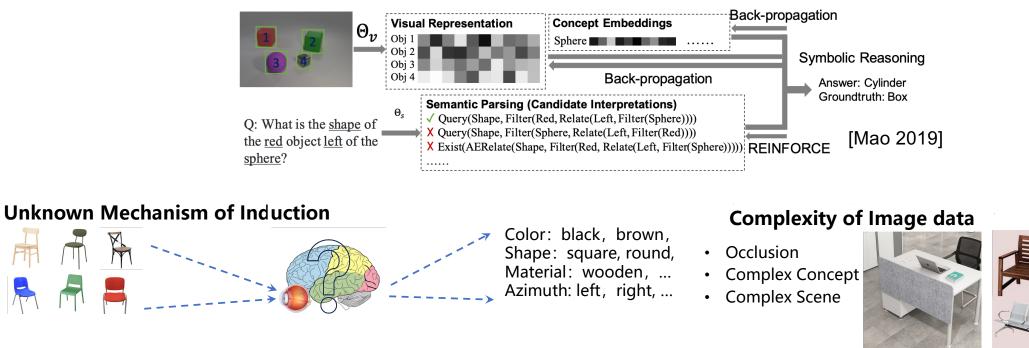
## Neuro-symbolic is not very helpful for complex data





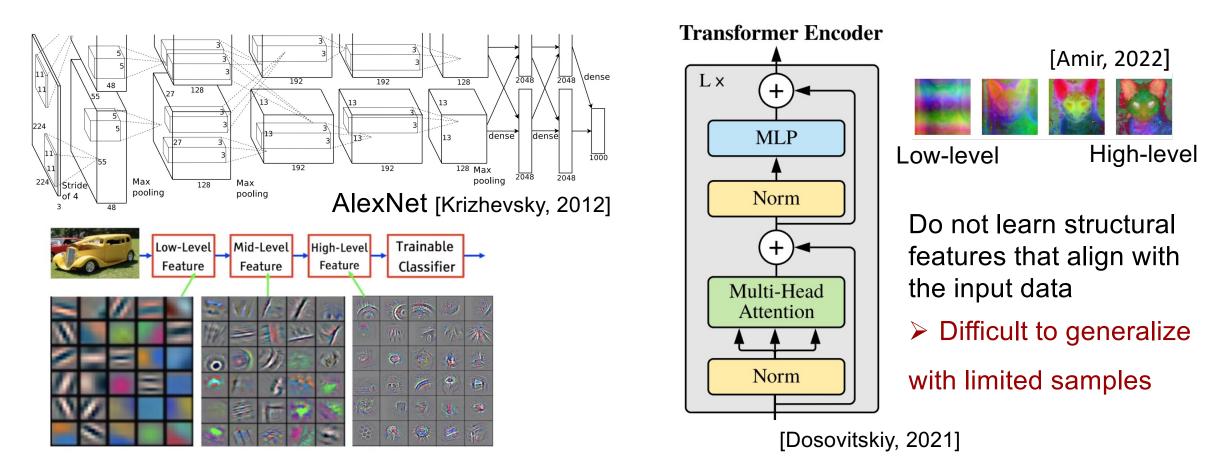
"an empty glass" "a family of five members

- Transformers are not good at learning discrete information from higher-dimensional perception data such as images, causing hallucination, inefficiency in training, and being data-hungry.
- Neuro-symbolic approach offers a more stable way to learn discrete symbols and their relations. However, the brain can learn without any annotated data, and real-world image data cannot be fully structured with a set of symbols.



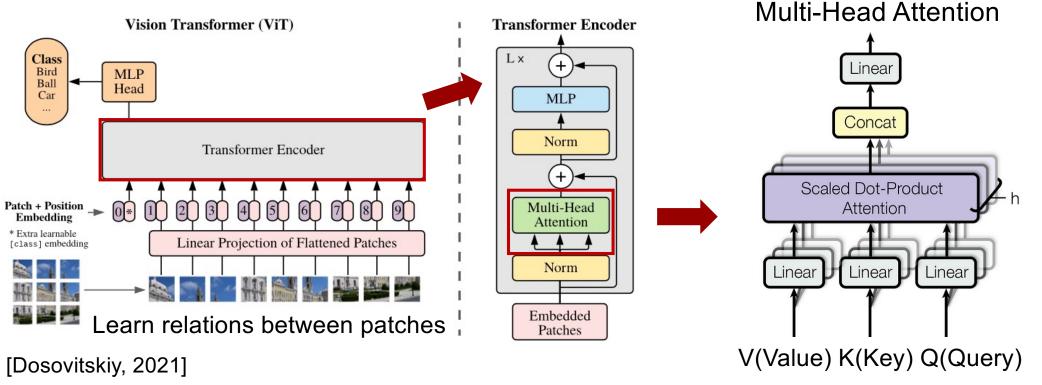


# Absence of inductive biases such as convolution operations for localized knowledge in Transformers

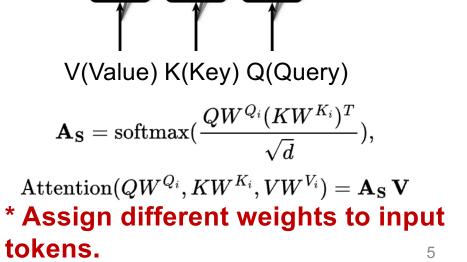


Unlike convolution operations in CNNs, Transformers do not learn structural features that align with the input data and usually perform worse than CNNs with limited samples.

### Vision Transformer and attention mechanism



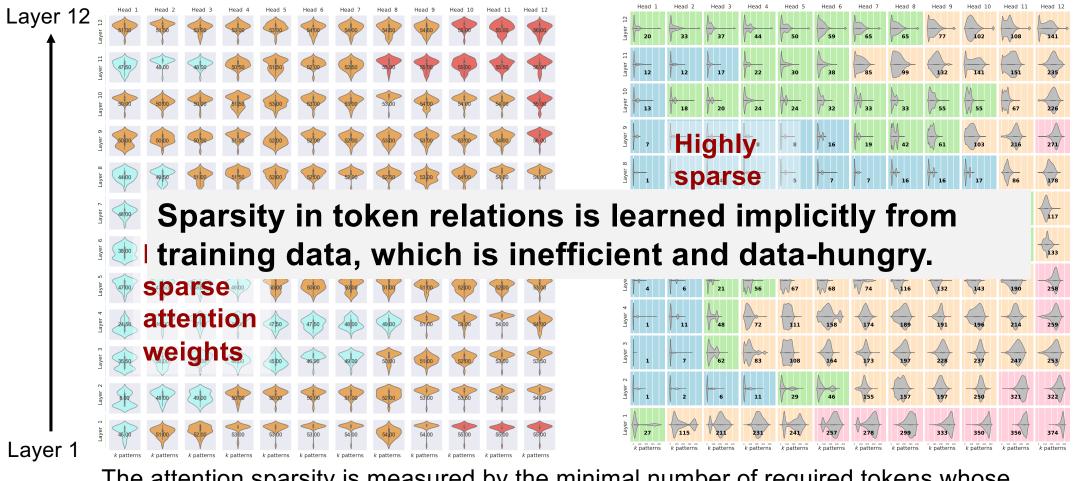
Transformers use pairwise attention to establish correlations among disparate input segments.



#### Analysis of attention weights in pretrained Transformers

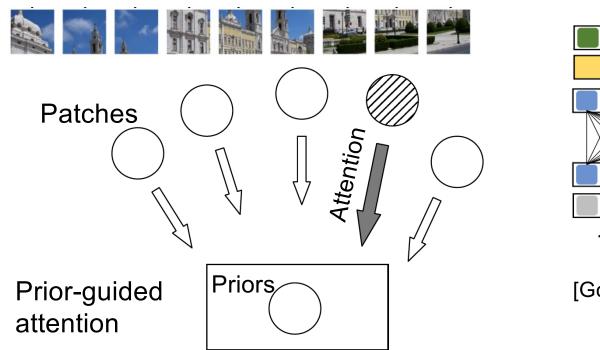
Vision Transformer

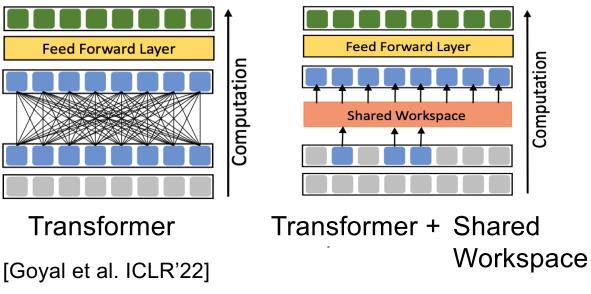
BERT (Natural language Transformer)



The attention sparsity is measured by the minimal number of required tokens whose attention scores add up to 0.90 SJTU CS Joint Workshop [Ramsaue 2021; Sun 2023]

## Inducing an information bottleneck in the attention mechanism





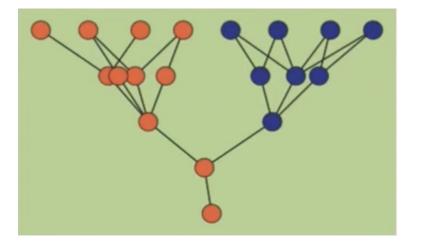
- Priors are general assumptions about samples, such as the aggregated features from different samples of the same object.
- > Competition through a **bottleneck** results in naturally emerging specialized priors.

# Specialized neural modules

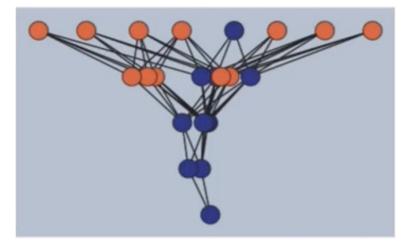
**Definition**: correspondence between strongly interconnected structural components of a network (modules) and the specialized functions they perform.

In animal brains, modularity favors evolvability, the ability to adapt to changing environments with common sub-problems [Clune, 2013]

Modular network



Non-modular network

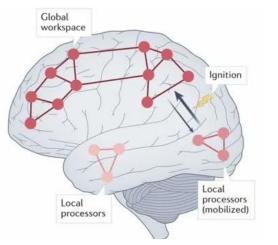


#### Working memory in the biological brain and Global Workspace Theory

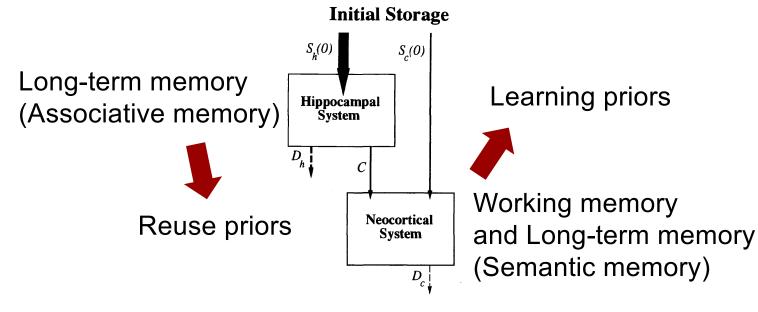
When we use working memory: (1) Learning in a novel situation (2) Taking a different approach in familiar situations

Capacity: Limited amount of information it can hold at one time

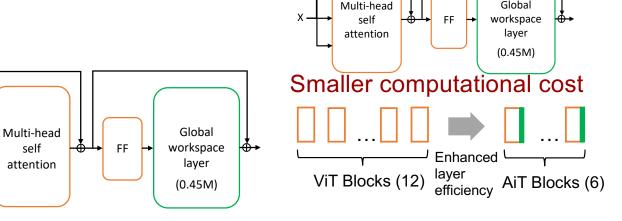
**Function:** Acts as a mental workspace where information can be manipulated: multiple specialized modules (potientially, multi-modal) compete to write to the shared space; information in the shared space is broadcast to all modules afterwards.



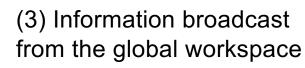
[Baars, 1988; Butlin, 2023]

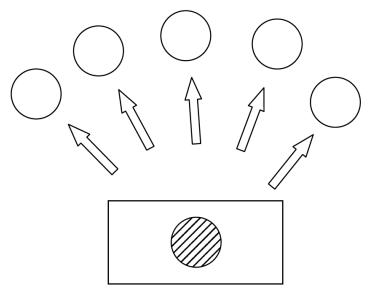


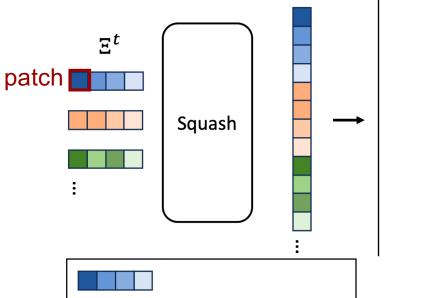




(2) Computing the bottleneck attention and selecting relevant patches





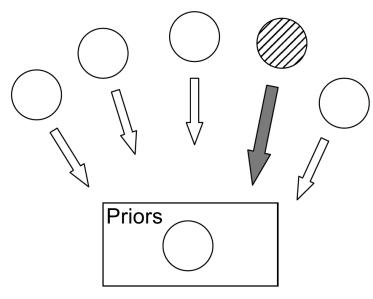


(1) Collecting patches

from all batch samples

**Global Workspace Layer** 

Images are represented by different hues. Patches from the same image are distinguished by differences in brightness.

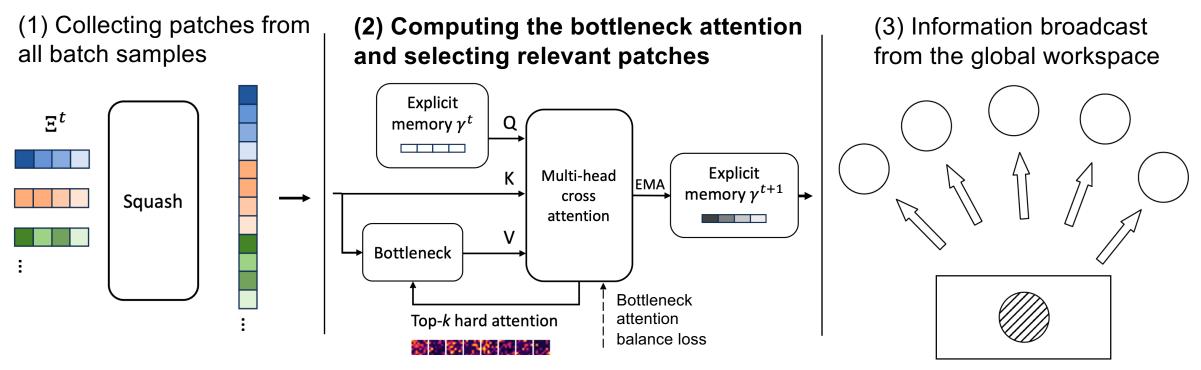


**Global Workspace** 

Sun et al., Associative Transformer, NeurIPS workshop; arXiv:2309.12862

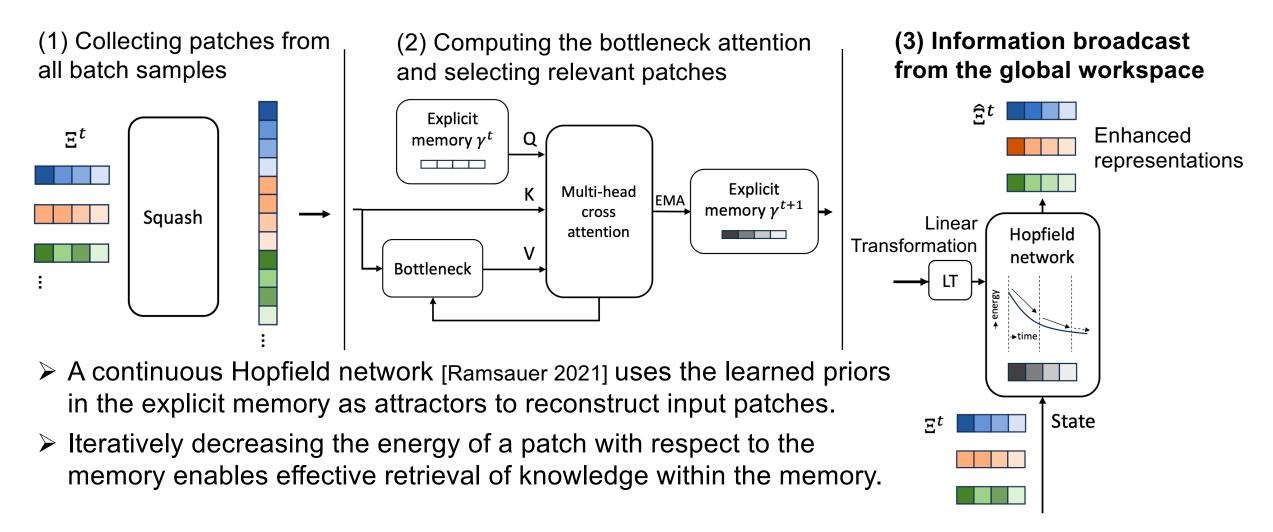
SJTU CS Joint Workshop

# **Global Workspace Layer**



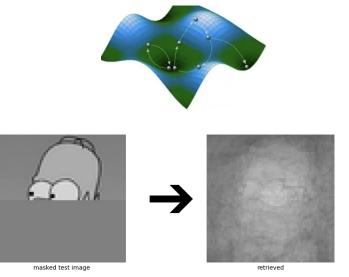
- The explicit memory stores and updates a set of priors (as queries) by attending to different patches based on the multi-head cross attention.
- > The sparsity is enabled through a bottleneck using the top-k hard attention.

# **Global Workspace Layer**



# **Continuous Hopfield Network**

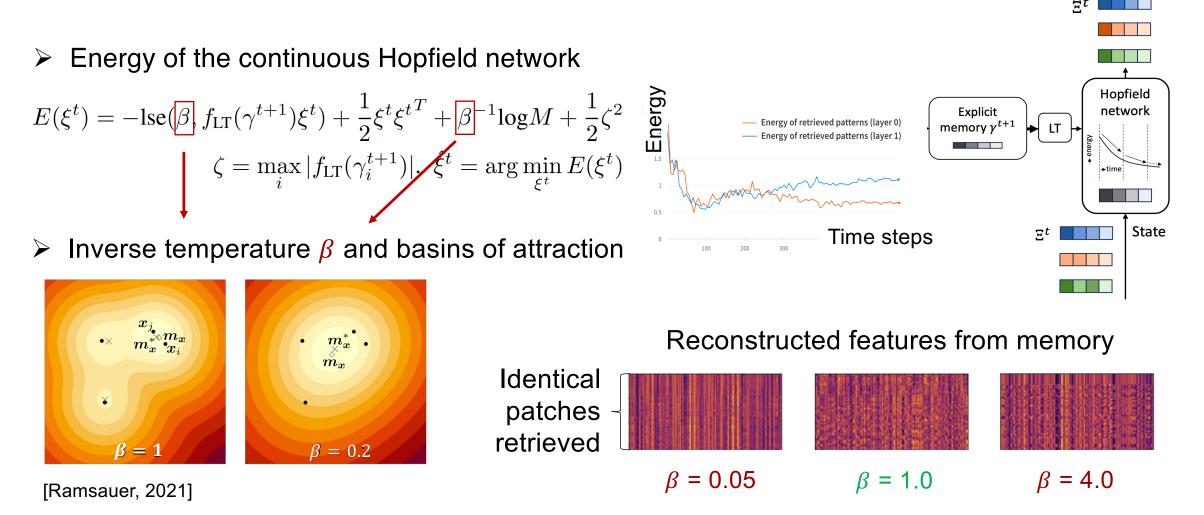




Multiple interactions of energy reduction to reconstruct patterns

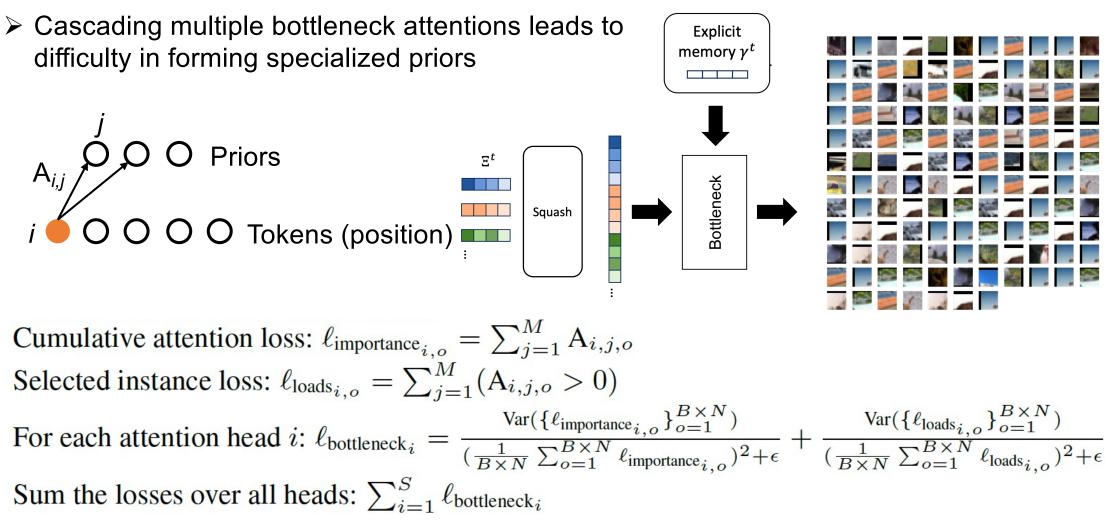
[Ramsauer, 2021]

#### Token retrieval with a continuous Hopfield network



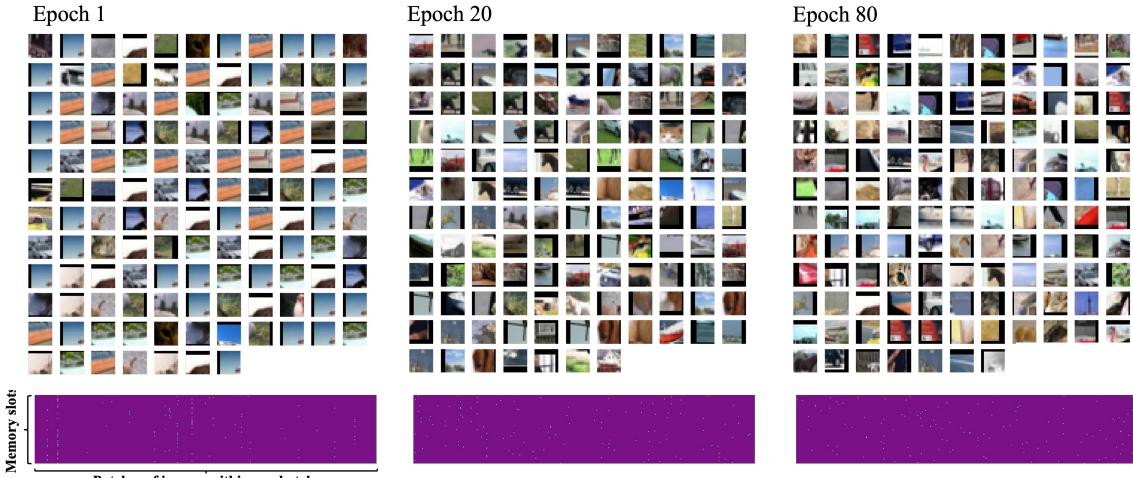
 $\succ$  A smaller  $\beta$  results in a metastable state  $\succ$  A very large or small  $\beta$  both can lead to within the basin of multiple attractors JTU CS Joint Worksholocal minima.

#### Problem 1: monolithic priors select repeated tokens: Introducing Bottleneck Attention Balance Loss



SJTU CS Joint Workshop

## Diversity in patch selection with the new loss



Patches of images within one batch

### Problem 2: Computational load with the squash operation

The squash layer concatenates all tokens in the batch,  $\Xi \in \mathbb{R}^{(B \times N) \times E}$ , allowing for across-sample learning but also increasing the computational cost for the attention mechanism.

To reduce its the computational load:

(1) a low rank memory, where the squashed representations are projected to a latent space of dimension  $D \ll E$ 

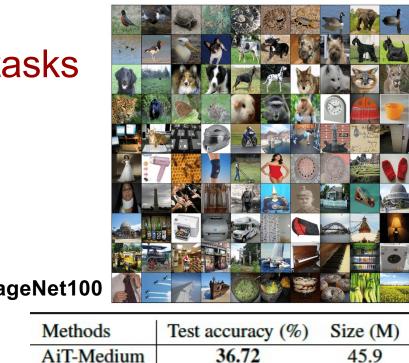
(2) an attention bottleneck with capacity  $k \ll B \times N$ , e.g., 1.6% ~ 3.2% of all the tokens in our experiments

| Methods   | Size (M) | #FLOPs               |
|-----------|----------|----------------------|
| AiT-Base  | 91.0     | $5.77 \times 10^9$   |
| AiT-Small | 15.8     | $9.64 \times 10^{8}$ |
| ViT-Base  | 85.7     | $5.60 \times 10^9$   |
| ViT-Smal  | 14.9     | $9.36 \times 10^{8}$ |

Less than a 3% increase in computation compared to Vision Transformers of similar size.

### Enhanced efficiency in image classification tasks

| Methods                            | CIFAR10 | CIFAR100 | Triangle | Average | Parameters | s (M) |
|------------------------------------|---------|----------|----------|---------|------------|-------|
| AiT-Base                           | 85.44   | 60.78    | 99.59    | 81.94   | 91.0       | _     |
| AiT-Medium                         | 84.59   | 60.58    | 99.57    | 81.58   | 45.9       |       |
| AiT-Small 6 layers                 | 83.34   | 56.30    | 99.47    | 79.70   | 15.8       |       |
| Coordination Goyal et al. (2022b)  | 75.31   | 43.90    | 91.66    | 70.29   | 2.2        | _     |
| Coordination-DH                    | 72.49   | 51.70    | 81.78    | 68.66   | 16.6       |       |
| Coordination-D                     | 74.50   | 40.69    | 86.28    | 67.16   | 2.2        | Ima   |
| Coordination-H                     | 78.51   | 48.59    | 72.53    | 66.54   | 8.4        | inna  |
| ViT-Base Dosovitskiy et al. (2021) | 83.82   | 57.92    | 99.63    | 80.46   | 85.7       |       |
| ViT-Small 12 layers                | 79.53   | 53.19    | 99.47    | 77.40   | 14.9       |       |
| Perceiver Jaegle et al. (2021)     | 82.52   | 52.64    | 96.78    | 77.31   | 44.9       |       |
| Set Transformer Lee et al. (2019)  | 73.42   | 40.19    | 60.31    | 57.97   | 2.2        |       |
| BRIMs Mittal et al. (2020)         | 60.10   | 31.75    | -        | 45.93   | 4.4        |       |
| Luna Ma et al. (2021)              | 47.86   | 23.38    | -        | 35.62   | 77.6       | _     |



33.84

34.62

31.72

28.16

AiT-Small

ViT-Base

ViT-Small

ViT-Medium

Our study demonstrates that AiT outperforms existing sparse Transformer models including the variants of Coordination [Goyal 2022] and Vision Transformers, without pretraining on external data.

15.8

85.7

42.7

14.9

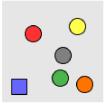
### Vision-language relational reasoning tasks

#### Sort-of-CLEVR dataset [Santoro, 2017]

#### A: bottom Relational question

Non-relational question

Q: What is the color of the object that is closest to the blue object? A: red



#### Non-relational question

Q: What is the shape of the red object? A: circle

#### **Relational question**

Q: How many objects have the shape of the blue object? A: 1

# •

#### Non-relational question

Q: Is the blue object on the top or on the bottom? A: top

Q: Is the yellow object on the top or on the bottom?

#### **Relational question**

Q: What is the color of the object that is closest to the red object? A: yellow

# Concatenated Image Text tokens tokens

#### Cross-modal priors Global Workspace

| Methods                  | Relational | Non-relational |  |  |  |  |
|--------------------------|------------|----------------|--|--|--|--|
| Transformer based models |            |                |  |  |  |  |
| AiT-Base                 | 80.03      | <b>99.98</b>   |  |  |  |  |
| AiT-Medium               | 78.14      | 99.75          |  |  |  |  |
| AiT-Small                | 76.82      | 99.85          |  |  |  |  |
| Coordination             | 73.43      | 96.31          |  |  |  |  |
| ViT-Base                 | 63.35      | 99.73          |  |  |  |  |
| ViT-Medium               | 54.71      | 99.70          |  |  |  |  |
| ViT-Small                | 51.75      | 98.80          |  |  |  |  |
| Set Transformer          | 47.63      | 57.65          |  |  |  |  |

### Conclusions

- Associative Transformer enhances parameter efficiency in the training of Transformer-based models, making them more accessible and cost-effective
- Implementing the cognitive science theory of the Global Workspace is crucial for a better understanding of human-like relational reasoning
- Other tasks and domains, such as audio and video
- Safe deployment in real-world applications.

#### Privacy of neural module learning

Bidirectional Contrastive Split Learning Sun et al. AAAI 2024

#### Adversarial attacks

Attacking Distance-aware Attack Sun et al. Transactions on AI 2023

## **Exploring Priors and Long-Term Memory in Transformers**

**Yuwei Sun** RIKEN AIP Araya Research



Associative Transformer paper

