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Can Multimodal LLMs Learn by Memorizing More Data?
Probably not..

3

“an empty glass” “a family of five members”

Stable Diffusion XL Stable Diffusion 2.1

Q: Do you see any . 5
window in this image? Q: Is the door of the truck cab open?

this image. The image shows a traditional red the image provided
pillar box, which is a type of mailbox found in )
the United Kingdom.

No, there are NO windows visible in ] . No, the door of the truck is NOt open in }

“a man descending a mountain” ‘“there is no star in the night sky”

— B

[Tong, 2024] [Jones, 2023]

SJTU CS Joint Workshop



MidJourney 5.1 DALL-E (New Bing)

Neuro-symbolic is not very helpful for complex data = &

“an empty glass” “a family of five members”

» Transformers are not good at learning discrete information from higher-dimensional
perception data such as images, causing hallucination, inefficiency in training, and being
data-hungry.

» Neuro-symbolic approach offers a more stable way to learn discrete symbols and their
relations. However, the brain can learn without any annotated data, and real-world image
data cannot be fully structured with a set of symbols.

@.. |Visual Representation |/ Concept Embeddings Back-propagation
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| Obj 4 ; Back-propagation

Symbolic Reasoning

Answer: Cylinder
Groundtruth: Box

Semantlc Parsing (Candidate Interpretations)

Os »/ Que
. . ry(Shape, Filter(Red, Relate(Left, Filter(Sphere))))
Q: What is the shape of — X Query(Shape, Filter(Sphere, Relate(Left, Filter(Red))))

. -—
the red object left of the | X Exist(AERelate(Shape, Filter(Red, Relate(Left, Fllter(Sphere))))) REINFORCE [Mao 201 9]
sphere? i

Unknown Mechanism of Induction
7 Color: black, brown,
_- Shape: square, round, < Occlusion

- Material: wooden, ... « Complex Concept
Azimuth: left, right, ... Complex Scene

—J _il = ,W \
/ N = 1
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Absence of inductive biases such as convolution operations
for localized knowledge in Transformers

Transformer Encoder

[Amir, 2022]
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el N L AlexNet [Krizhevsky, 2012] Norm
Do not learn structural
i Low-Level Mid-Level| High-Level Trainable -—— . .
s FeaturJ— Feature f?eaturJ_’ Classifier e featu reS that allgn Wlth
_ _ i Multi-Head the input data
7 , JE e e 67 Attention . .
1) » Difficult to generalize
Norm with limited samples

[Dosovitskiy, 2021]

» Unlike convolution operations in CNNs, Transformers do not learn structural features that
align with the input data and usually perform worse than CNNs with limited samples.
SJTU CS Joint Workshop



Vision Transformer and attention mechanism

Vision Transformer (ViT)

Transformer Encoder
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ST :
mgs—wﬁilmmﬁiﬂﬂ

WEE ) oo relations between patches
[Dosovitskiy, 2021]

MLP
Head ‘

Transformer Encoder

Multi-Head
Attention

| I N |

Embedded
Patches

» Transformers use pairwise attention to establish
correlations among disparate input segments.
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Multi-Head Attention
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Analysis of attention weights in pretrained Transformers

Vision Transformer BERT (Natural language Transformer)
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The attention sparsity is measured by the minimal number of required tokens whose
attention scores add up to 0.90 SJTU €S Joint Workshop (Ramsaue 2021: Sun 2023] 6



Inducing an information bottleneck in the attention mechanism

"“*Qa (TITIITIITIR [TTTTTTTIE
Feed Forward Layer | Feed Forward Layer | -
O ;. ipwnnn
Patches Q @ B , g
g_ ‘ Shared Workspace ‘ g'
. E (@]
S | ETEE (°
I |
Transformer Transformer + Shared
Prior-guided Prior@ [Goyal et al. ICLR'22] Workspace
attention

» Priors are general assumptions about samples, such as the aggregated features
from different samples of the same object.

» Competition through a bottleneck results in naturally emerging specialized priors.
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Specialized neural modules

Definition: correspondence between strongly interconnected structural
components of a network (modules) and the specialized functions they perform.

In animal brains, modularity favors evolvability, the ability to adapt to
changing environments with common sub-problems [Clune, 2013]

Modular network Non-modular network
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Working memory in the biological brain and Global Workspace Theory

When we use working memory: (1) Learning in a novel situation Gt
(2) Taking a different approach in familiar situations

Capacity: Limited amount of information it can hold at one time

Function: Acts as a mental workspace where information can be
manipulated: multiple specialized modules (potientially, multi-
modal) compete to write to the shared space; information in the
shared space is broadcast to all modules afterwards.

Initial Storage

5,(0) 5(0)

Long-term memory . :
. Hippocampal Learning priors
(Associative memory) | sysem

v " | ¢

Working memory
Reuse priOFS Neocortical
swem | and Long-term memory

>7— (Semantic memory)
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Global Workspace Layer .=, # *

(1) Collecting patches
from all batch samples

=t !
patch I ] ||
[TTT] Squash | T
BT
_J B
BT 7]

Images are represented by different
hues. Patches from the same image
are distinguished by differences in
brightness.
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Multi-head

attention
—»

— workspace
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Global

layer
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(2) Computing the bottleneck attention

and selecting relevant patches

A

Priors

O

Global Workspace

Smaller computational cost

\ Y ) Enhanced \'————

VT Blocks (12) f‘f}’igency AIT Blocks (6)

(3) Information broadcast
from the global workspace
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Sun et al., Associative Transformer, NeurlPS workshop; arXiv:2309.12862

SJTU CS Joint Workshop

10



Global Workspace Layer

(1) Collecting patches from

all batch samples

Y
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(2) Computing the bottleneck attention

and selecting relevant patches

=

Explicit
memory yt | Q ( \
I — —
K | Multi-head EXpIIClt
> cross memoryy
\_Q— attention
Vv
Bottleneck
l Bottleneck
Top-k hard attention : attention
SENZREINED | balance loss

(3) Information broadcast
from the global workspace

~QQC
NAEF=

D

» The explicit memory stores and updates a set of priors (as queries) by attending to
different patches based on the multi-head cross attention.

» The sparsity is enabled through a bottleneck using the top-k hard attention.

SJTU CS Joint Workshop
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Global Workspace Layer

(3) Information broadcast
from the global workspace

[
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(1) Collecting patches from (2) Computing the bottleneck attention
all batch samples and selecting relevant patches
TN E Explicit
=t memory yt | Q
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SquaSh — attention Lm_ear
] V Transformation
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» A continuous Hopfield network [Ramsauer 2021] uses the learned priors
in the explicit memory as attractors to reconstruct input patches.

> lteratively decreasing the energy of a patch with respect to the
memory enables effective retrieval of knowledge within the memory.

SJTU CS Joint Workshop
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Continuous Hopfield Network

2P

N o
train input 1 train input 2 train input 3 train input 4 train input 5 train input 6
train input 7 train input 8 train input 9 train input 10 train input 11 train input 12

J
(o)

train input 13 train input 14 train input 15 train input 16 train input 17 train input 18
train input 19 train input 20 train input 21 train input 22 train input 23 train input 24

[Ramsauer, 2021]

Multiple interactions of energy
reduction to reconstruct patterns
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Token retrieval with a continuous Hopfield network
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EE
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Reconstructed features from memory
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|dentical
patches
retrieved

[Ramsauer, 2021]

» A smaller  results in a metastable state » Avery large or small f both can lead to
within the basin of multiple attractors.;tu cs Joint worksndocal minima. 14



Problem 1: monolithic priors select repeated tokens:
Introducing Bottleneck Attention Balance Loss

» Cascading multiple bottleneck attentions leads to
difficulty in forming specialized priors
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Diversity in patch selection with the new loss
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Patches of images within one batch
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Problem 2: Computational load with the squash operation

The squash layer concatenates all tokens in the batch, = € R(EXMXE gllowing for

across-sample learning but also increasing the computational cost for the attention
mechanism.

To reduce its the computational load:

(1) a low rank memory, where the squashed representations are projected to a latent
space of dimension D < E

(2) an attention bottleneck with capacity k < BxN,e.g., 1.6% ~ 3.2% of all the tokens
in our experiments

Methods Size (M)  #FLOPs

- > Less than a 3% increase in computation
AiT-Base 91.0  5.77x10° 0 P

ATSmall 158  9.64x10° compared to Vision Transformers of similar
ViT-Base 857  5.60x10° Size.
ViT-Smal 149  9.36x10°

SJTU CS Joint Workshop
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Enhanced efficiency in image classification tasks

Methods CIFAR10 CIFAR100 Triangle Average Parameters (M)

AiT-Base 85.44 60.78 99.59 81.94 91.0

AiT-Medium 84.59 60.58 99.57 81.58 45.9

AiT-Small 6 layers 83.34 56.30 99.47  79.70 15.8

Coordination Goyal et al. (2022b) | 75.31 43.90 91.66 70.29 2.2

Coordination-DH 72.49 51.70 81.78 68.66 16.6 - T

Coord%nat%on—D 74.50 40.69 86.28 67.16 2.2 ImageNet100 ‘1 Sarf

Coordination-H 78.51 48.59 72.53  66.54 8.4 —

ViT-Base Dosovitskiy et al. (2021)[ 83.82 57.92 99.63 80.46 85.7 Methods Test accuracy (%) Size (M)
ViT-Small 12 layers 79.53 53.19 99.47  77.40 14.9 AiT-Medium 36.72 45.9
Perceiver Jaegle et al. (2021) 82.52 52.64 96.78  77.31 449 AiT-Small 33.84 15.8
Set Transformer Lee et al. (2019) | 73.42 40.19 60.31 57.97 2.2 ViT-Base 34.62 85.7
BRIMs Mittal et al. (2020) 60.10 31.75 - 45.93 4.4 ViT-Medium 31.72 42.7
Luna Ma et al. (2021) 4786  23.38 - 3562 716 ViT-Small 28.16 14.9

Our study demonstrates that AiT outperforms existing sparse Transformer
models including the variants of Coordination [Goyal 2022] and Vision
Transformers, without pretraining on external data.
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Concatenated

Vision-language relational reasoning tasks yage Text

tokens tokens

Non-relational question
. . Q: Is the yellow object on the top or on the bottom?

Sort-of-CLEVR dataset [Santoro, 2017] “\¥ @ @ ‘
N I/

A: bottom

Relational question
O Q: What is the color of the object that is closest to the blue object?

A: red .
CrOSS'mOdaI prlors Global Workspace
Non-relational question
Q: What is the shape of the red object? . .
e O .. ’ ’ Methods Relational Non-relational

@ Relational question Transformer based models

. . . Q: How many objects have the shape of the blue object?

A 1 AiT-Base 80.03 99.98

AiT-Medium 78.14 L

Non-relational question :
. . . Q: Is the blue object on the top or on the bottom? AlT—Small 76-82 99.85
[] A *op Coordination Fo45 96.31
Relational question - >
. . Q: What is the color of the object that is closest to the red object? VIT'Base 6335 9973

A: yellow ViT-Medium 54.71 99.70
ViT-Small 311D 08.80
Set Transformer 47.63 57.65
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Conclusions

» Associative Transformer enhances parameter efficiency in the
training of Transformer-based models, making them more accessible
and cost-effective

» Implementing the cognitive science theory of the Global Workspace is
crucial for a better understanding of human-like relational reasoning

» Other tasks and domains, such as audio and video
» Safe deployment in real-world applications.

Privacy of neural module learning Adversarial attacks

Bidirectional Contrastive Split Learning Attacking Distance-aware Attack
Sun et al. AAAI 2024 Sun et al. Transactions on Al 2023
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